|
|
import datasets |
|
|
import os |
|
|
|
|
|
class BrainCancerMRIConfig(datasets.BuilderConfig): |
|
|
"""BuilderConfig for Brain Cancer MRI Classification.""" |
|
|
def __init__(self, **kwargs): |
|
|
"""BuilderConfig for the dataset. |
|
|
Args: |
|
|
**kwargs: keyword arguments forwarded to super. |
|
|
""" |
|
|
super(BrainCancerMRIConfig, self).__init__(**kwargs) |
|
|
|
|
|
class BrainCancerMRIClassification(datasets.GeneratorBasedBuilder): |
|
|
"""Brain Cancer MRI Classification dataset.""" |
|
|
|
|
|
|
|
|
CLASSES = ['glioma', 'meningioma', 'notumor', 'pituitary'] |
|
|
|
|
|
def _info(self): |
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
|
|
|
features=datasets.Features({ |
|
|
"image": datasets.Image(), |
|
|
"label": datasets.ClassLabel(names=self.CLASSES), |
|
|
}), |
|
|
homepage=_HOMEPAGE, |
|
|
license=_LICENSE, |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
data_dir = os.path.join(dl_manager.manual_dir or ".", "classification") |
|
|
|
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
|
|
|
gen_kwargs={"path": os.path.join(data_dir, "Training")}, |
|
|
), |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TEST, |
|
|
|
|
|
gen_kwargs={"path": os.path.join(data_dir, "Testing")}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, path): |
|
|
"""This function will yield examples: a unique key and a dictionary of features.""" |
|
|
|
|
|
for label in self.CLASSES: |
|
|
class_path = os.path.join(path, label) |
|
|
|
|
|
if os.path.isdir(class_path): |
|
|
|
|
|
for filename in os.listdir(class_path): |
|
|
image_path = os.path.join(class_path, filename) |
|
|
|
|
|
if os.path.isfile(image_path): |
|
|
key = f"{label}_{filename}" |
|
|
yield key, { |
|
|
"image": image_path, |
|
|
"label": label, |
|
|
} |