Datasets:
Create data_loader.py
Browse files- data_loader.py +66 -0
data_loader.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
class BrainCancerMRIConfig(datasets.BuilderConfig):
|
| 5 |
+
"""BuilderConfig for Brain Cancer MRI Classification."""
|
| 6 |
+
def __init__(self, **kwargs):
|
| 7 |
+
"""BuilderConfig for the dataset.
|
| 8 |
+
Args:
|
| 9 |
+
**kwargs: keyword arguments forwarded to super.
|
| 10 |
+
"""
|
| 11 |
+
super(BrainCancerMRIConfig, self).__init__(**kwargs)
|
| 12 |
+
|
| 13 |
+
class BrainCancerMRIClassification(datasets.GeneratorBasedBuilder):
|
| 14 |
+
"""Brain Cancer MRI Classification dataset."""
|
| 15 |
+
|
| 16 |
+
# Define the classes for the 'label' feature
|
| 17 |
+
CLASSES = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
| 18 |
+
|
| 19 |
+
def _info(self):
|
| 20 |
+
return datasets.DatasetInfo(
|
| 21 |
+
description=_DESCRIPTION,
|
| 22 |
+
# Define the features of the dataset, including the image and its corresponding label
|
| 23 |
+
features=datasets.Features({
|
| 24 |
+
"image": datasets.Image(),
|
| 25 |
+
"label": datasets.ClassLabel(names=self.CLASSES),
|
| 26 |
+
}),
|
| 27 |
+
homepage=_HOMEPAGE,
|
| 28 |
+
license=_LICENSE,
|
| 29 |
+
citation=_CITATION,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def _split_generators(self, dl_manager):
|
| 33 |
+
# The data is already in the repository, so we just need the path
|
| 34 |
+
# `dl_manager.manual_dir` will point to the root of the dataset repository
|
| 35 |
+
data_dir = os.path.join(dl_manager.manual_dir or ".", "classification")
|
| 36 |
+
|
| 37 |
+
return [
|
| 38 |
+
datasets.SplitGenerator(
|
| 39 |
+
name=datasets.Split.TRAIN,
|
| 40 |
+
# Provide the path to the training data directory
|
| 41 |
+
gen_kwargs={"path": os.path.join(data_dir, "Training")},
|
| 42 |
+
),
|
| 43 |
+
datasets.SplitGenerator(
|
| 44 |
+
name=datasets.Split.TEST,
|
| 45 |
+
# Provide the path to the testing data directory
|
| 46 |
+
gen_kwargs={"path": os.path.join(data_dir, "Testing")},
|
| 47 |
+
),
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
def _generate_examples(self, path):
|
| 51 |
+
"""This function will yield examples: a unique key and a dictionary of features."""
|
| 52 |
+
# Iterate over each class directory (e.g., 'glioma', 'meningioma', etc.)
|
| 53 |
+
for label in self.CLASSES:
|
| 54 |
+
class_path = os.path.join(path, label)
|
| 55 |
+
# Check if the class directory exists to avoid errors
|
| 56 |
+
if os.path.isdir(class_path):
|
| 57 |
+
# Iterate over each image file in the class directory
|
| 58 |
+
for filename in os.listdir(class_path):
|
| 59 |
+
image_path = os.path.join(class_path, filename)
|
| 60 |
+
# Check if it is a file to avoid including subdirectories
|
| 61 |
+
if os.path.isfile(image_path):
|
| 62 |
+
key = f"{label}_{filename}"
|
| 63 |
+
yield key, {
|
| 64 |
+
"image": image_path,
|
| 65 |
+
"label": label,
|
| 66 |
+
}
|