The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
name: string
file: string
dtype: string
dim: int64
radius: int64
packed_bits: bool
packed_dim: null
n_ligands: int64
model_id: string
pooling: string
vs
name: string
file: string
dtype: string
dim: int64
radius: int64
packed_bits: bool
packed_dim: int64
n_ligands: int64
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 563, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
name: string
file: string
dtype: string
dim: int64
radius: int64
packed_bits: bool
packed_dim: null
n_ligands: int64
model_id: string
pooling: string
vs
name: string
file: string
dtype: string
dim: int64
radius: int64
packed_bits: bool
packed_dim: int64
n_ligands: int64Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
ReverseLigQ dataset (Hugging Face)
This repository contains the ReverseLigQ dataset files in a simplified layout designed to be loaded with a LigandStore/Representation interface (compound representations) plus organism-level auxiliary tables (ReverseLigQ metadata).
Directory layout
compound_data/
pdb_chembl/
ligands.parquet
reps/
chemberta_zinc_base_768.dat
chemberta_zinc_base_768.meta.json
morgan_1024_r2.dat
morgan_1024_r2.meta.json
rev_ligq/
fam_prot_dict.pkl
ligand_lists.pkl
ligs_fams_curated.pkl
ligs_fams_possible.pkl
prot_descriptions.pkl
Compound data (compound_data/pdb_chembl/)
ligands.parquet
Canonical ligand index table with a dense integer index (lig_idx) used to align all representations on disk.
Typical columns:
chem_comp_id: unified ligand ID (PDB CCD or ChEMBL)smiles: canonical SMILESinchikey: optional (may be missing)lig_idx: dense index 0..N-1 (row order for the.datmatrices)
Representations (reps/)
Each representation is stored as:
<rep_name>.dat: memory-mapped matrix on disk<rep_name>.meta.json: metadata (dtype, dim, packed_bits, etc.)
Available representations:
chemberta_zinc_base_768: ChemBERTa embeddings (dim=768), dense float matrix.morgan_1024_r2: Morgan fingerprints (1024 bits, radius=2), stored withpacked_bits=true.
Organism-specific tables (rev_ligq/)
These files provide organism-level ligand lists, Pfam-based protein families, and optional protein descriptions used to project ligand-level similarity hits into candidate protein targets.
ligand_lists.pkl: dict{organism_key (str): [chem_comp_id, ...]}ligs_fams_curated.pkl: dict{chem_comp_id: [pfam_id, ...]}(curated evidence)ligs_fams_possible.pkl: dict{chem_comp_id: [pfam_id, ...]}(possible/uncurated evidence)fam_prot_dict.pkl: nested dict{organism_key: {pfam_id: [uniprot_id, ...]}}prot_descriptions.pkl: protein descriptions (when available)
Organism keys
ReverseLigQ integrates multiple organisms, each identified by an integer key:
| Key | Organism |
|---|---|
| 1 | Bartonella bacilliformis |
| 2 | Klebsiella pneumoniae |
| 3 | Mycobacterium tuberculosis |
| 4 | Trypanosoma cruzi |
| 5 | Staphylococcus aureus RF122 |
| 6 | Streptococcus uberis 0140J |
| 7 | Enterococcus faecium |
| 8 | Escherichia coli MG1655 |
| 9 | Streptococcus agalactiae NEM316 |
| 10 | Pseudomonas syringae |
| 11 | DENV (Dengue virus) |
| 12 | SARS-CoV-2 |
| 13 | Homo sapiens |
Citation
If you use these datasets, please cite:
Schottlender G, Prieto JM, Palumbo MC, Castello FA, Serral F, Sosa EJ, Turjanski AG, Martí MA and Fernández Do Porto D (2022). From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale. Front. Drug. Discov. 2:969983. doi: 10.3389/fddsv.2022.969983
- Downloads last month
- 10