metadata
tags:
- ocr
- document-processing
- hunyuan-ocr
- multilingual
- markdown
- uv-script
- generated
Document OCR using HunyuanOCR
This dataset contains OCR results from images in NationalLibraryOfScotland/Scottish-School-Exam-Papers using HunyuanOCR, a lightweight 1B VLM from Tencent.
Processing Details
- Source Dataset: NationalLibraryOfScotland/Scottish-School-Exam-Papers
- Model: tencent/HunyuanOCR
- Number of Samples: 100
- Processing Time: 9.8 min
- Processing Date: 2025-11-25 16:15 UTC
Configuration
- Image Column:
image - Output Column:
markdown - Dataset Split:
train - Batch Size: 1
- Prompt Mode: parse-document
- Prompt Language: English
- Max Model Length: 16,384 tokens
- Max Output Tokens: 16,384
- GPU Memory Utilization: 80.0%
Model Information
HunyuanOCR is a lightweight 1B VLM that excels at:
- π Document Parsing - Full markdown extraction with reading order
- π Table Extraction - HTML format tables
- π Formula Recognition - LaTeX format formulas
- π Chart Parsing - Mermaid/Markdown format
- π Text Spotting - Detection with coordinates
- π Information Extraction - Key-value, fields, subtitles
- π Translation - Multilingual photo translation
Prompt Modes Available
parse-document- Full document parsing (default)parse-formula- LaTeX formula extractionparse-table- HTML table extractionparse-chart- Chart/flowchart parsingspot- Text detection with coordinatesextract-key- Extract specific key valueextract-fields- Extract multiple fields as JSONextract-subtitles- Subtitle extractiontranslate- Document translation
Dataset Structure
The dataset contains all original columns plus:
markdown: The extracted text in markdown formatinference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr HunyuanOCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/hunyuan-ocr.py \
NationalLibraryOfScotland/Scottish-School-Exam-Papers \
<output-dataset> \
--image-column image \
--batch-size 1 \
--prompt-mode parse-document \
--max-model-len 16384 \
--max-tokens 16384 \
--gpu-memory-utilization 0.8
Generated with UV Scripts