Datasets:
license: mit
task_categories:
- text-classification
tags:
- tcr
- tcr-pmhc
- peptide
- mhc
- immunology
- binding-prediction
- pmt
size_categories:
- 100K<n<1M
PMT Benchmark Dataset
Dataset Description
The PMT (Peptide-MHC-TCR) benchmark dataset for training and evaluating TCR-pMHC binding prediction models. This dataset contains TCR CDR3 sequences, peptide antigens, HLA alleles, and binary binding labels.
Dataset Summary
This is the official PMT training and in-distribution (ID) test set from the SPRINT framework. The data has been cleaned, deduplicated, and standardized for reproducibility.
- Training Set: 474,881 samples
- ID Test Set: 4,564 samples
- Task: Binary classification (TCR-pMHC binding prediction)
- Modality: TCR CDR3 + Peptide + MHC (PMT task)
Dataset Structure
Data Files
train.csv: Training data (474,881 samples)id_test.csv: In-distribution test data (4,564 samples)
Data Format
CSV files with the following columns:
| Column | Type | Description |
|---|---|---|
| CDR3 | string | TCR CDR3beta amino acid sequence |
| peptide | string | Peptide antigen sequence (8-15 aa) |
| HLA | string | HLA allele (standardized format: A*02:01) |
| label | int | Binding label (1=binder, 0=non-binder) |
| HLA_sequence | string | HLA pseudo-sequence (optional) |
Dataset Statistics
Training Set
- Total Samples: 474,881
- Positive Samples: 33,129 (7.0%)
- Negative Samples: 441,752 (93.0%)
- Unique HLAs: 78
- Unique Peptides: 638
- Unique TCRs: 32,853
ID Test Set
- Total Samples: 4,564
- Positive Samples: 321 (7.0%)
- Negative Samples: 4,243 (93.0%)
- Unique HLAs: 12
- Unique Peptides: 190
- Unique TCRs: 1,283
Usage
Load with Hugging Face Datasets
from datasets import load_dataset
# Load training data
dataset = load_dataset("YYJMAY/pmt-interaction", split="train")
train_df = dataset.to_pandas()
# Load test data
dataset = load_dataset("YYJMAY/pmt-interaction", split="test")
test_df = dataset.to_pandas()
Load with Pandas
import pandas as pd
from huggingface_hub import hf_hub_download
# Download training file
train_path = hf_hub_download(
repo_id="YYJMAY/pmt-interaction",
filename="train.csv",
repo_type="dataset"
)
train_df = pd.read_csv(train_path)
# Download test file
test_path = hf_hub_download(
repo_id="YYJMAY/pmt-interaction",
filename="id_test.csv",
repo_type="dataset"
)
test_df = pd.read_csv(test_path)
Use with SPRINT Framework
The SPRINT framework automatically downloads and uses this dataset:
python scripts/run_benchmark.py --method METHOD --dataset pmt --mode train
python scripts/run_benchmark.py --method METHOD --dataset pmt --mode eval
Data Quality
Preprocessing
- Deduplication: All duplicate entries removed based on (CDR3, peptide, HLA, label)
- HLA Standardization: All HLA alleles normalized to standard format (e.g., A*02:01)
- Missing Values: No missing values in required columns
- Label Validation: All labels are binary (0 or 1)
Peptide Length Distribution
Training set peptide lengths: 8-15 amino acids Test set peptide lengths: 8-15 amino acids
Construction
This dataset was curated and cleaned as part of the SPRINT benchmarking framework:
- Collected from multiple public TCR-pMHC datasets
- Standardized HLA allele naming conventions
- Removed duplicates and incomplete entries
- Split into training and in-distribution test sets
- Validated for data quality and consistency
Tasks
This dataset is designed for:
- PMT (Peptide-MHC-TCR) Task: Predict TCR-pMHC binding using all three components
- Binary Classification: Classify as binder (1) or non-binder (0)
- Model Benchmarking: Evaluate model performance on standardized data
Limitations
- Only includes class I MHC (HLA-A, HLA-B, HLA-C)
- Limited to TCR CDR3beta sequences
- Binary labels (no binding affinity values)
- Peptide length range: 8-15 amino acids
Citation
If you use this dataset, please cite:
@dataset{pmt_benchmark_2024,
title={PMT Benchmark Dataset for TCR-pMHC Binding Prediction},
author={SPRINT Framework Contributors},
year={2024},
url={https://huggingface.co/datasets/YYJMAY/pmt-interaction}
}
License
MIT License
Contact
For questions or issues, please open an issue in the SPRINT repository.
Related Datasets
- Allelic OOD: YYJMAY/allelic-ood
- Temporal OOD: YYJMAY/temporal-ood
- Modality OOD: YYJMAY/modality-ood