Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
schema: string
generated_at: double
context: struct<what_this_is: string, what_this_is_not: string>
start_here: struct<ranking_jsonl: string, canon: string, snapshot: string>
top_omissions: list<item: struct<necessity_id: string, score: double, avg_persistence_days: double, records: int64>>
vs
last_sync: string
sync_method: string
components: struct<badges: struct<count: int64, last_update: string, index_file: string>, cards: struct<count: int64, last_update: string, directory: string>>
coherence_checks: struct<badges_cards_match: bool, cards_count: int64, badges_count: int64, last_check: string>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3608, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2368, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2573, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2060, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2082, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 572, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              schema: string
              generated_at: double
              context: struct<what_this_is: string, what_this_is_not: string>
              start_here: struct<ranking_jsonl: string, canon: string, snapshot: string>
              top_omissions: list<item: struct<necessity_id: string, score: double, avg_persistence_days: double, records: int64>>
              vs
              last_sync: string
              sync_method: string
              components: struct<badges: struct<count: int64, last_update: string, index_file: string>, cards: struct<count: int64, last_update: string, directory: string>>
              coherence_checks: struct<badges_cards_match: bool, cards_count: int64, badges_count: int64, last_check: string>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

 ██████╗██████╗  ██████╗ ██╗   ██╗██╗ █████╗ 
██╔════╝██╔══██╗██╔═══██╗██║   ██║██║██╔══██╗
██║     ██████╔╝██║   ██║██║   ██║██║███████║
██║     ██╔══██╗██║   ██║╚██╗ ██╔╝██║██╔══██║
╚██████╗██║  ██║╚██████╔╝ ╚████╔╝ ██║██║  ██║
 ╚═════╝╚═╝  ╚═╝ ╚═════╝   ╚═══╝  ╚═╝╚═╝  ╚═╝

📊 GLOBAL AI TRAINING OMISSIONS

Append-Only Temporal Observation Ledger


Registry Observer Evidence Files FOUNDING STAGE


⚓ Registry Observer · � Dataset Files · 📖 Evidence Format


⚠️ WHAT WE TRACK

┌────────────────────────────────────────────────────────────────────────────┐
│                                                                            │
│   This dataset records OBSERVATIONS — not analysis or judgment.            │
│                                                                            │
│   📊 Evidence files:         Verifiable, timestamped records               │
│   📜 Canon definitions:      NEC# vocabulary (necessities.v1.yaml)         │
│   🎯 Observation types:      Presence, absence, temporal pressure          │
│   👤 Public ledger:          Append-only, cryptographically anchored       │
│                                                                            │
│   The data is PUBLIC. The method is DETERMINISTIC.                         │
│   This is PROTOCOL v1.0 — Founding Stage, Jan 2026.                        │
│                                                                            │
└────────────────────────────────────────────────────────────────────────────┘

📖 What This Dataset Is

This dataset is an append-only mirror of Crovia's public Training Provenance Registry (TPR).

What This Dataset Contains

Observed presence/absence events — timestamped facts from the registry
Temporal metrics — first_seen, last_seen, days_monitored (derived mathematically)
Cryptographic receipts — receipt_hash for each observation
Merkle-root anchored history — verifiable integrity proofs
Registry metadata — source, endpoint, timestamps

What This Dataset Does NOT Contain

Scores — no shadow scores, trust scores, or compliance scores
Rankings — no leaderboards or comparative judgments
Badges — no GOLD/SILVER/BRONZE classifications
Compliance judgments — no violation assessments or interpretations
Placeholders — every field is derived from real observations

This dataset is a temporal evidence ledger, not an analysis or ranking system.


🔬 How Observations Work

┌─────────────────────────────────────────────────────────────────┐
│                    OBSERVATION PIPELINE                         │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  1. OBSERVE           2. RECORD            3. PUBLISH           │
│  ┌──────────────┐    ┌──────────────┐    ┌──────────────┐      │
│  │ Scanner      │───▶│ TPR Registry │───▶│ Evidence     │      │
│  │ (automated)  │    │ (PostgreSQL) │    │ Dataset      │      │
│  │              │    │ Append-only  │    │ (this repo)  │      │
│  └──────────────┘    └──────────────┘    └──────────────┘      │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

📁 Dataset Structure

├── observations.jsonl         # PRIMARY: Append-only observation ledger (213 records)
├── EVIDENCE.json              # Legacy: Static evidence file
├── badges/                    # Legacy: Deprecated (not used)
├── cards/                     # Legacy: Deprecated (not used)
├── canon/
│   └── necessities.v1.yaml    # NEC# definitions (20 types)
├── open/
│   ├── forensic/              # Evidence processing scripts
│   ├── signal/                # Presence/absence signals
│   └── temporal/              # Historical pressure data
└── v0.1/                      # Versioned snapshots

Primary File: observations.jsonl

Each line is a JSON record with:

  • receipt_hash: Cryptographic identifier (sha256)
  • target_id: Model/dataset identifier (e.g., openai/whisper-large-v3)
  • observation_type: presence or absence
  • observed_at: Timestamp (ISO 8601)
  • first_seen, last_seen: Temporal boundaries
  • days_monitored: Days between first and last observation
  • observation_count: Total observations for this target
  • absence_streak_days: Consecutive absence days (if applicable)
  • source: Observer identifier
  • registry_endpoint: Source API
  • merkle_root: Registry integrity proof

⚓ Registry Observer

View Live Registry →

The Registry Observer Space displays:

  • Registry statistics (total observations, today, unique targets)
  • Merkle root (cryptographic verification)
  • Recent observations (timestamped records)
  • Truth Anchor (source-of-truth declarations)

Note: The Observer is viewer-only. It does NOT calculate scores, assign badges, or perform analysis.


🔗 Using This Dataset

For Researchers

Access evidence files directly:

# Download evidence file
wget https://huggingface.co/datasets/Crovia/global-ai-training-omissions/resolve/main/EVIDENCE.json

# View canon definitions
wget https://huggingface.co/datasets/Crovia/global-ai-training-omissions/resolve/main/canon/necessities.v1.yaml

For Verification

# Verify snapshot integrity
curl -s https://huggingface.co/datasets/Crovia/global-ai-training-omissions/resolve/main/snapshot_latest.json | jq '.hash'

What this dataset is

Crovia — Global AI Training Omissions Evidence Dataset v0.1

This dataset publishes verifiable, hash-anchored evidence of observations recorded across AI training datasets and models.

It answers one and only one question:

Are public AI training disclosures observable — yes or no?

This dataset IS

  • an observation layer, not an audit
  • a cryptographically verifiable record
  • a public, reproducible signal of absence or presence
  • aligned with EU AI Act transparency principles

This dataset IS NOT

  • it does not audit models
  • it does not infer intent
  • it does not assign blame
  • it does not make legal claims

Observable, verifiable updates

This dataset is designed for automatic updates:

  • Public artifacts are observed systematically
  • If nothing changes, the update itself proves persistence
  • If something changes, hashes and commits reflect it
  • No manual curation or interpretation
  • No retroactive edits

Current Status (Jan 2026): Founding Stage

  • 5 curated models demonstrate protocol feasibility
  • Automation infrastructure ready for deployment
  • Full-scale observation pending infrastructure activation

Every update will be:

  • Publicly committed to this dataset
  • Reproducible via open scripts (open/forensic/)
  • Independently verifiable via cryptographic anchors

Start here (viewer-first)

If you open only one file, open:

➡️ START_HERE.md

It explains the evidence layout for non-technical readers.


Open Plane (public observation layer)

The Open Plane measures one condition only:

Absence is observable.

It contains:

  • presence signals:
    open/signal/presence_latest.jsonl

  • absence receipts (time-bucketed):
    open/forensic/absence_receipts_7d.jsonl

  • overview:
    open/README.md


Core artifacts

  • observation records: global_ranking.jsonl (legacy filename, contains observations)
  • current snapshot: snapshot_latest.json
  • cryptographic proof: EVIDENCE.json
  • canonical vocabulary: canon/necessities.v1.yaml

PRO Shadow (non-disclosing)

Crovia PRO can compute private semantic measurements.

The Open Plane publishes a hash-anchored shadow pointer proving that a measurement exists without disclosing private data:

  • open/signal/pro_shadow_pressure_latest.json
  • open/README_PRO_SHADOW.md

Temporal pressure (silence over time)

Crovia tracks how long silence persists under sustained observation.

Temporal pressure increases when:

  • observation coverage is HIGH
  • no public training evidence is disclosed
  • silence persists across days

This does not imply wrongdoing.

➡️ open/temporal/temporal_pressure_30d.jsonl

Downloads last month
1,294

Space using Crovia/global-ai-training-omissions 1