File size: 9,336 Bytes
7beec83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639ec7
7beec83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639ec7
7beec83
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
HuggingFace Dataset Loader for SimEIT - Electrical Impedance Tomography Dataset

This loader supports loading EIT data from HDF5 files with train/validation/test splits.
The dataset contains voltage measurements and conductivity maps (images) at different resolutions.
"""

import datasets
import h5py
import numpy as np
from pathlib import Path


class EITDatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for EIT Dataset."""
    
    def __init__(self, subset="CirclesOnly", image_resolution="128_log", **kwargs):
        """
        Args:
            subset: Which dataset subset to load ("CirclesOnly" or "FourObjects")
            image_resolution: Image resolution to load ("32_log", "64_log", "128_log", or "256")
            **kwargs: keyword arguments forwarded to super.
        """
        super(EITDatasetConfig, self).__init__(**kwargs)
        self.subset = subset
        self.image_resolution = image_resolution


class EITDataset(datasets.GeneratorBasedBuilder):
    """A custom dataset loader for EIT (Electrical Impedance Tomography) .h5 files."""
    
    BUILDER_CONFIGS = [
        EITDatasetConfig(
            name="circles_128",
            version=datasets.Version("1.0.0"),
            description="CirclesOnly dataset with 128x128 resolution (log scale)",
            subset="CirclesOnly",
            image_resolution="128_log"
        ),
        EITDatasetConfig(
            name="circles_256",
            version=datasets.Version("1.0.0"),
            description="CirclesOnly dataset with 256x256 resolution",
            subset="CirclesOnly",
            image_resolution="256"
        ),
        EITDatasetConfig(
            name="four_objects_128",
            version=datasets.Version("1.0.0"),
            description="FourObjects dataset with 128x128 resolution (log scale)",
            subset="FourObjects",
            image_resolution="128_log"
        ),
        EITDatasetConfig(
            name="four_objects_256",
            version=datasets.Version("1.0.0"),
            description="FourObjects dataset with 256x256 resolution",
            subset="FourObjects",
            image_resolution="256"
        ),
    ]
    
    DEFAULT_CONFIG_NAME = "circles_128"

    def _info(self):
        """Define the features (columns) of the dataset."""
        # Determine image shape based on resolution
        if self.config.image_resolution == "256":
            image_shape = (256, 256)
        elif self.config.image_resolution == "128_log":
            image_shape = (128, 128)
        elif self.config.image_resolution == "64_log":
            image_shape = (64, 64)
        elif self.config.image_resolution == "32_log":
            image_shape = (32, 32)
        else:
            image_shape = (128, 128)  # default
        
        return datasets.DatasetInfo(
            description=(
                "SimEIT: A Scalable Simulation Framework for Generating Large-Scale "
                "Electrical Impedance Tomography Datasets. This dataset contains "
                "voltage measurements and corresponding conductivity maps for EIT imaging."
            ),
            features=datasets.Features({
                "voltage_measurements": datasets.Sequence(datasets.Value("float32")),
                "conductivity_map": datasets.Array2D(shape=image_shape, dtype="float32"),
                "graph_representation": datasets.Sequence(datasets.Value("float32")),
                "sample_id": datasets.Value("int32"),
            }),
            homepage="https://huggingface.co/datasets/your-dataset-repo",
            license="apache-2.0",
            citation="",
        )

    def _split_generators(self, dl_manager):
        """Define data splits and their corresponding files."""
        # Get the base path - assumes the script is in the dataset directory
        # or you can modify this to point to your data location
        base_path = Path(self.config.data_dir) if self.config.data_dir else Path(".")
        subset_path = base_path / self.config.subset
        
        # Path to the HDF5 file
        h5_file = subset_path / "dataset.h5"
        
        # Paths to split files
        train_split_file = subset_path / "parameters" / "train.txt"
        val_split_file = subset_path / "parameters" / "val.txt"
        test_split_file = subset_path / "parameters" / "test.txt"
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": str(h5_file),
                    "split_file": str(train_split_file),
                    "image_resolution": self.config.image_resolution,
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": str(h5_file),
                    "split_file": str(val_split_file),
                    "image_resolution": self.config.image_resolution,
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": str(h5_file),
                    "split_file": str(test_split_file),
                    "image_resolution": self.config.image_resolution,
                }
            ),
        ]

    def _generate_examples(self, filepath, split_file, image_resolution):
        """
        Read the .h5 file and yield examples based on the split file.
        
        Args:
            filepath: Path to the HDF5 file
            split_file: Path to the text file containing sample indices for this split
            image_resolution: Resolution of images to load
        """
        # Read the split indices
        with open(split_file, 'r') as f:
            indices = [int(line.strip()) for line in f if line.strip()]
        
        # Open the HDF5 file and load data
        with h5py.File(filepath, "r") as h5_file:
            # Access the datasets
            voltage_data = h5_file["volt"]["16"]  # Shape: (256, 110000)
            image_data = h5_file["image"][image_resolution]  # Shape: (H, W, 110000)
            
            # Check if graph data exists for this resolution
            graph_key = image_resolution if image_resolution != "256" else "128_log"
            if graph_key in h5_file["graph"]:
                graph_data = h5_file["graph"][graph_key]
            else:
                graph_data = None
            
            # Iterate over the indices for this split
            for idx, sample_idx in enumerate(indices):
                # Extract data for this sample
                voltage_measurements = voltage_data[:, sample_idx].astype(np.float32)
                conductivity_map = image_data[:, :, sample_idx].astype(np.float32)
                
                # Prepare the example
                example = {
                    "voltage_measurements": voltage_measurements.tolist(),
                    "conductivity_map": conductivity_map,
                    "sample_id": sample_idx,
                }
                
                # Add graph representation if available
                if graph_data is not None:
                    graph_representation = graph_data[:, sample_idx].astype(np.float32)
                    example["graph_representation"] = graph_representation.tolist()
                else:
                    # Provide empty list if graph data is not available
                    example["graph_representation"] = []
                
                yield idx, example


# Example usage:
if __name__ == "__main__":
    # Example 1: Load the dataset with default configuration
    print("Loading CirclesOnly dataset with 128x128 resolution...")
    dataset = datasets.load_dataset(
        __file__,
        name="circles_128",
        data_dir="https://huggingface.co/datasets/AymanAmeen/SimEIT-dataset",
        trust_remote_code=True
    )
    
    print(f"Train split size: {len(dataset['train'])}")
    print(f"Validation split size: {len(dataset['validation'])}")
    print(f"Test split size: {len(dataset['test'])}")
    
    # Access a single example
    example = dataset['train'][0]
    print("\nExample structure:")
    print(f"  Voltage measurements shape: {len(example['voltage_measurements'])}")
    print(f"  Conductivity map shape: {example['conductivity_map'].shape}")
    print(f"  Graph representation shape: {len(example['graph_representation'])}")
    print(f"  Sample ID: {example['sample_id']}")
    
    # Example 2: Load FourObjects dataset
    print("\n" + "="*50)
    print("Loading FourObjects dataset with 256x256 resolution...")
    dataset_4obj = datasets.load_dataset(
        __file__,
        name="four_objects_256",
        data_dir="https://huggingface.co/datasets/AymanAmeen/SimEIT-dataset",
        trust_remote_code=True
    )
    
    print(f"Train split size: {len(dataset_4obj['train'])}")
    
    # Example 3: Iterate through a few samples
    print("\n" + "="*50)
    print("Iterating through first 3 samples...")
    for i, sample in enumerate(dataset['train'].select(range(3))):
        print(f"Sample {i}: ID={sample['sample_id']}, "
              f"Voltage shape={len(sample['voltage_measurements'])}, "
              f"Image shape={sample['conductivity_map'].shape}")