Create eit_dataset_loader.py
Browse files- eit_dataset_loader.py +229 -0
eit_dataset_loader.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HuggingFace Dataset Loader for SimEIT - Electrical Impedance Tomography Dataset
|
| 3 |
+
|
| 4 |
+
This loader supports loading EIT data from HDF5 files with train/validation/test splits.
|
| 5 |
+
The dataset contains voltage measurements and conductivity maps (images) at different resolutions.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import datasets
|
| 9 |
+
import h5py
|
| 10 |
+
import numpy as np
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class EITDatasetConfig(datasets.BuilderConfig):
|
| 15 |
+
"""BuilderConfig for EIT Dataset."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, subset="CirclesOnly", image_resolution="128_log", **kwargs):
|
| 18 |
+
"""
|
| 19 |
+
Args:
|
| 20 |
+
subset: Which dataset subset to load ("CirclesOnly" or "FourObjects")
|
| 21 |
+
image_resolution: Image resolution to load ("32_log", "64_log", "128_log", or "256")
|
| 22 |
+
**kwargs: keyword arguments forwarded to super.
|
| 23 |
+
"""
|
| 24 |
+
super(EITDatasetConfig, self).__init__(**kwargs)
|
| 25 |
+
self.subset = subset
|
| 26 |
+
self.image_resolution = image_resolution
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class EITDataset(datasets.GeneratorBasedBuilder):
|
| 30 |
+
"""A custom dataset loader for EIT (Electrical Impedance Tomography) .h5 files."""
|
| 31 |
+
|
| 32 |
+
BUILDER_CONFIGS = [
|
| 33 |
+
EITDatasetConfig(
|
| 34 |
+
name="circles_128",
|
| 35 |
+
version=datasets.Version("1.0.0"),
|
| 36 |
+
description="CirclesOnly dataset with 128x128 resolution (log scale)",
|
| 37 |
+
subset="CirclesOnly",
|
| 38 |
+
image_resolution="128_log"
|
| 39 |
+
),
|
| 40 |
+
EITDatasetConfig(
|
| 41 |
+
name="circles_256",
|
| 42 |
+
version=datasets.Version("1.0.0"),
|
| 43 |
+
description="CirclesOnly dataset with 256x256 resolution",
|
| 44 |
+
subset="CirclesOnly",
|
| 45 |
+
image_resolution="256"
|
| 46 |
+
),
|
| 47 |
+
EITDatasetConfig(
|
| 48 |
+
name="four_objects_128",
|
| 49 |
+
version=datasets.Version("1.0.0"),
|
| 50 |
+
description="FourObjects dataset with 128x128 resolution (log scale)",
|
| 51 |
+
subset="FourObjects",
|
| 52 |
+
image_resolution="128_log"
|
| 53 |
+
),
|
| 54 |
+
EITDatasetConfig(
|
| 55 |
+
name="four_objects_256",
|
| 56 |
+
version=datasets.Version("1.0.0"),
|
| 57 |
+
description="FourObjects dataset with 256x256 resolution",
|
| 58 |
+
subset="FourObjects",
|
| 59 |
+
image_resolution="256"
|
| 60 |
+
),
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
DEFAULT_CONFIG_NAME = "circles_128"
|
| 64 |
+
|
| 65 |
+
def _info(self):
|
| 66 |
+
"""Define the features (columns) of the dataset."""
|
| 67 |
+
# Determine image shape based on resolution
|
| 68 |
+
if self.config.image_resolution == "256":
|
| 69 |
+
image_shape = (256, 256)
|
| 70 |
+
elif self.config.image_resolution == "128_log":
|
| 71 |
+
image_shape = (128, 128)
|
| 72 |
+
elif self.config.image_resolution == "64_log":
|
| 73 |
+
image_shape = (64, 64)
|
| 74 |
+
elif self.config.image_resolution == "32_log":
|
| 75 |
+
image_shape = (32, 32)
|
| 76 |
+
else:
|
| 77 |
+
image_shape = (128, 128) # default
|
| 78 |
+
|
| 79 |
+
return datasets.DatasetInfo(
|
| 80 |
+
description=(
|
| 81 |
+
"SimEIT: A Scalable Simulation Framework for Generating Large-Scale "
|
| 82 |
+
"Electrical Impedance Tomography Datasets. This dataset contains "
|
| 83 |
+
"voltage measurements and corresponding conductivity maps for EIT imaging."
|
| 84 |
+
),
|
| 85 |
+
features=datasets.Features({
|
| 86 |
+
"voltage_measurements": datasets.Sequence(datasets.Value("float32")),
|
| 87 |
+
"conductivity_map": datasets.Array2D(shape=image_shape, dtype="float32"),
|
| 88 |
+
"graph_representation": datasets.Sequence(datasets.Value("float32")),
|
| 89 |
+
"sample_id": datasets.Value("int32"),
|
| 90 |
+
}),
|
| 91 |
+
homepage="https://huggingface.co/datasets/your-dataset-repo",
|
| 92 |
+
license="apache-2.0",
|
| 93 |
+
citation="",
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
def _split_generators(self, dl_manager):
|
| 97 |
+
"""Define data splits and their corresponding files."""
|
| 98 |
+
# Get the base path - assumes the script is in the dataset directory
|
| 99 |
+
# or you can modify this to point to your data location
|
| 100 |
+
base_path = Path(self.config.data_dir) if self.config.data_dir else Path(".")
|
| 101 |
+
subset_path = base_path / self.config.subset
|
| 102 |
+
|
| 103 |
+
# Path to the HDF5 file
|
| 104 |
+
h5_file = subset_path / "dataset.h5"
|
| 105 |
+
|
| 106 |
+
# Paths to split files
|
| 107 |
+
train_split_file = subset_path / "parameters" / "train.txt"
|
| 108 |
+
val_split_file = subset_path / "parameters" / "val.txt"
|
| 109 |
+
test_split_file = subset_path / "parameters" / "test.txt"
|
| 110 |
+
|
| 111 |
+
return [
|
| 112 |
+
datasets.SplitGenerator(
|
| 113 |
+
name=datasets.Split.TRAIN,
|
| 114 |
+
gen_kwargs={
|
| 115 |
+
"filepath": str(h5_file),
|
| 116 |
+
"split_file": str(train_split_file),
|
| 117 |
+
"image_resolution": self.config.image_resolution,
|
| 118 |
+
}
|
| 119 |
+
),
|
| 120 |
+
datasets.SplitGenerator(
|
| 121 |
+
name=datasets.Split.VALIDATION,
|
| 122 |
+
gen_kwargs={
|
| 123 |
+
"filepath": str(h5_file),
|
| 124 |
+
"split_file": str(val_split_file),
|
| 125 |
+
"image_resolution": self.config.image_resolution,
|
| 126 |
+
}
|
| 127 |
+
),
|
| 128 |
+
datasets.SplitGenerator(
|
| 129 |
+
name=datasets.Split.TEST,
|
| 130 |
+
gen_kwargs={
|
| 131 |
+
"filepath": str(h5_file),
|
| 132 |
+
"split_file": str(test_split_file),
|
| 133 |
+
"image_resolution": self.config.image_resolution,
|
| 134 |
+
}
|
| 135 |
+
),
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
def _generate_examples(self, filepath, split_file, image_resolution):
|
| 139 |
+
"""
|
| 140 |
+
Read the .h5 file and yield examples based on the split file.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
filepath: Path to the HDF5 file
|
| 144 |
+
split_file: Path to the text file containing sample indices for this split
|
| 145 |
+
image_resolution: Resolution of images to load
|
| 146 |
+
"""
|
| 147 |
+
# Read the split indices
|
| 148 |
+
with open(split_file, 'r') as f:
|
| 149 |
+
indices = [int(line.strip()) for line in f if line.strip()]
|
| 150 |
+
|
| 151 |
+
# Open the HDF5 file and load data
|
| 152 |
+
with h5py.File(filepath, "r") as h5_file:
|
| 153 |
+
# Access the datasets
|
| 154 |
+
voltage_data = h5_file["volt"]["16"] # Shape: (256, 110000)
|
| 155 |
+
image_data = h5_file["image"][image_resolution] # Shape: (H, W, 110000)
|
| 156 |
+
|
| 157 |
+
# Check if graph data exists for this resolution
|
| 158 |
+
graph_key = image_resolution if image_resolution != "256" else "128_log"
|
| 159 |
+
if graph_key in h5_file["graph"]:
|
| 160 |
+
graph_data = h5_file["graph"][graph_key]
|
| 161 |
+
else:
|
| 162 |
+
graph_data = None
|
| 163 |
+
|
| 164 |
+
# Iterate over the indices for this split
|
| 165 |
+
for idx, sample_idx in enumerate(indices):
|
| 166 |
+
# Extract data for this sample
|
| 167 |
+
voltage_measurements = voltage_data[:, sample_idx].astype(np.float32)
|
| 168 |
+
conductivity_map = image_data[:, :, sample_idx].astype(np.float32)
|
| 169 |
+
|
| 170 |
+
# Prepare the example
|
| 171 |
+
example = {
|
| 172 |
+
"voltage_measurements": voltage_measurements.tolist(),
|
| 173 |
+
"conductivity_map": conductivity_map,
|
| 174 |
+
"sample_id": sample_idx,
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
# Add graph representation if available
|
| 178 |
+
if graph_data is not None:
|
| 179 |
+
graph_representation = graph_data[:, sample_idx].astype(np.float32)
|
| 180 |
+
example["graph_representation"] = graph_representation.tolist()
|
| 181 |
+
else:
|
| 182 |
+
# Provide empty list if graph data is not available
|
| 183 |
+
example["graph_representation"] = []
|
| 184 |
+
|
| 185 |
+
yield idx, example
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Example usage:
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
# Example 1: Load the dataset with default configuration
|
| 191 |
+
print("Loading CirclesOnly dataset with 128x128 resolution...")
|
| 192 |
+
dataset = datasets.load_dataset(
|
| 193 |
+
__file__,
|
| 194 |
+
name="circles_128",
|
| 195 |
+
data_dir="/mnt/f/MSS/EIT-Dataset/uploadedDataset",
|
| 196 |
+
trust_remote_code=True
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
print(f"Train split size: {len(dataset['train'])}")
|
| 200 |
+
print(f"Validation split size: {len(dataset['validation'])}")
|
| 201 |
+
print(f"Test split size: {len(dataset['test'])}")
|
| 202 |
+
|
| 203 |
+
# Access a single example
|
| 204 |
+
example = dataset['train'][0]
|
| 205 |
+
print("\nExample structure:")
|
| 206 |
+
print(f" Voltage measurements shape: {len(example['voltage_measurements'])}")
|
| 207 |
+
print(f" Conductivity map shape: {example['conductivity_map'].shape}")
|
| 208 |
+
print(f" Graph representation shape: {len(example['graph_representation'])}")
|
| 209 |
+
print(f" Sample ID: {example['sample_id']}")
|
| 210 |
+
|
| 211 |
+
# Example 2: Load FourObjects dataset
|
| 212 |
+
print("\n" + "="*50)
|
| 213 |
+
print("Loading FourObjects dataset with 256x256 resolution...")
|
| 214 |
+
dataset_4obj = datasets.load_dataset(
|
| 215 |
+
__file__,
|
| 216 |
+
name="four_objects_256",
|
| 217 |
+
data_dir="/mnt/f/MSS/EIT-Dataset/uploadedDataset",
|
| 218 |
+
trust_remote_code=True
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
print(f"Train split size: {len(dataset_4obj['train'])}")
|
| 222 |
+
|
| 223 |
+
# Example 3: Iterate through a few samples
|
| 224 |
+
print("\n" + "="*50)
|
| 225 |
+
print("Iterating through first 3 samples...")
|
| 226 |
+
for i, sample in enumerate(dataset['train'].select(range(3))):
|
| 227 |
+
print(f"Sample {i}: ID={sample['sample_id']}, "
|
| 228 |
+
f"Voltage shape={len(sample['voltage_measurements'])}, "
|
| 229 |
+
f"Image shape={sample['conductivity_map'].shape}")
|