Extractor_Adaptor_Qwen3_Final_SCHEMA_Special
This model is a fine-tuned version of Qwen/Qwen3-0.6B on the web_finetune_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.0474 | 0.1193 | 50 | 0.0482 |
| 0.0475 | 0.2385 | 100 | 0.0466 |
| 0.0301 | 0.3578 | 150 | 0.0448 |
| 0.0418 | 0.4770 | 200 | 0.0438 |
| 0.0444 | 0.5963 | 250 | 0.0437 |
| 0.0333 | 0.7156 | 300 | 0.0420 |
| 0.0297 | 0.8348 | 350 | 0.0409 |
| 0.0216 | 0.9541 | 400 | 0.0399 |
| 0.0182 | 1.0716 | 450 | 0.0401 |
| 0.02 | 1.1908 | 500 | 0.0402 |
| 0.0271 | 1.3101 | 550 | 0.0394 |
| 0.0244 | 1.4293 | 600 | 0.0394 |
| 0.0185 | 1.5486 | 650 | 0.0389 |
| 0.0223 | 1.6679 | 700 | 0.0386 |
| 0.0186 | 1.7871 | 750 | 0.0385 |
| 0.0255 | 1.9064 | 800 | 0.0385 |
Framework versions
- PEFT 0.15.2
- Transformers 4.57.1
- Pytorch 2.9.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support