NextCoder-32B-FP8
High-quality FP8 quantization of Microsoft's NextCoder-32B, optimized for production inference
This is an FP8 (E4M3) quantized version of microsoft/NextCoder-32B using compressed_tensors format. Quantized by TevunahAi on enterprise-grade hardware with 2048 calibration samples.
π― Recommended Usage: vLLM (Required)
For 32B models, vLLM is essential for practical deployment. FP8 quantization makes this flagship model accessible on high-end consumer GPUs.
Quick Start with vLLM
pip install vllm
Python API:
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
# vLLM auto-detects FP8 from model config
llm = LLM(model="TevunahAi/NextCoder-32B-FP8", dtype="auto")
# Prepare prompt with chat template
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/NextCoder-32B-FP8")
messages = [{"role": "user", "content": "Write a Python function to calculate fibonacci numbers"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Generate
outputs = llm.generate(prompt, SamplingParams(temperature=0.7, max_tokens=512))
print(outputs[0].outputs[0].text)
OpenAI-Compatible API Server:
vllm serve TevunahAi/NextCoder-32B-FP8 \
--dtype auto \
--max-model-len 4096
Then use with OpenAI client:
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123", # dummy key
)
response = client.chat.completions.create(
model="TevunahAi/NextCoder-32B-FP8",
messages=[
{"role": "user", "content": "Write a Python function to calculate fibonacci numbers"}
],
temperature=0.7,
max_tokens=512,
)
print(response.choices[0].message.content)
vLLM Benefits
- β Weights, activations, and KV cache in FP8
- β ~32GB VRAM (50% reduction vs BF16's ~64GB)
- β Single high-end GPU deployment (H100, RTX 6000 Ada, A100 80GB)
- β Native FP8 tensor core acceleration
- β Production-grade performance
β οΈ Transformers: Not Practical
At 32B parameters, transformers will decompress to ~64GB+ VRAM, requiring multi-GPU setups or data center GPUs. This is not recommended for deployment.
Transformers Example (Multi-GPU Required - Click to expand)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Requires multi-GPU or 80GB+ single GPU
model = AutoModelForCausalLM.from_pretrained(
"TevunahAi/NextCoder-32B-FP8",
device_map="auto", # Will distribute across GPUs
torch_dtype="auto",
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/NextCoder-32B-FP8")
# Generate code
messages = [{"role": "user", "content": "Write a Python function to calculate fibonacci numbers"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Requirements:
pip install torch>=2.1.0 transformers>=4.40.0 accelerate compressed-tensors
System Requirements:
- ~64GB+ VRAM (decompressed to BF16)
- Multi-GPU setup or A100 80GB / H100 80GB
- Not practical for most deployments
β οΈ Critical: Use vLLM instead. Transformers is only viable for research/testing with multi-GPU setups.
π Quantization Details
| Property | Value |
|---|---|
| Base Model | microsoft/NextCoder-32B |
| Quantization Method | FP8 E4M3 weight-only |
| Framework | llm-compressor + compressed_tensors |
| Storage Size | ~32GB (sharded safetensors) |
| VRAM (vLLM) | ~32GB |
| VRAM (Transformers) | ~64GB+ (decompressed to BF16) |
| Target Hardware | NVIDIA H100, A100 80GB, RTX 6000 Ada |
| Quantization Date | November 23, 2025 |
| Quantization Time | 213.8 minutes |
Quantization Infrastructure
Professional hardware ensures consistent, high-quality quantization:
- CPUs: Dual Intel Xeon Max 9480 (112 cores / 224 threads, 128GB HBM2e)
- GPU: NVIDIA RTX 5000 Ada Generation (32GB VRAM, native FP8 support)
- Memory: 256GB DDR5 + 128GB HBM2e = 384GB total system memory
- Software Stack: Ubuntu 25.10 | Python 3.12 | PyTorch 2.8 | CUDA 13.0 | llm-compressor
π§ Why FP8 for 32B Models?
With vLLM/TensorRT-LLM:
- β Enables single-GPU deployment (~32GB vs ~64GB BF16)
- β 50% memory reduction across weights, activations, and KV cache
- β Faster inference via native FP8 tensor cores
- β Makes flagship model accessible on high-end consumer/prosumer GPUs
- β Minimal quality loss (sub-1% perplexity increase)
Without FP8:
- β BF16 requires ~64GB VRAM (H100 80GB or multi-GPU)
- β Limited deployment options
- β Higher infrastructure costs
FP8 quantization transforms 32B from "data center only" to "high-end workstation deployable".
πΎ Model Files
This model is sharded into multiple safetensors files (all required for inference). The compressed format enables efficient storage and faster downloads.
π Performance Comparison
The 32B model represents the flagship tier:
| Model | VRAM (vLLM) | Quality | Use Case |
|---|---|---|---|
| 7B-FP8 | ~7GB | Good | General coding, fast iteration |
| 14B-FP8 | ~14GB | Better | Complex tasks, better reasoning |
| 32B-FP8 | ~32GB | Best | Flagship performance, production |
32B Benefits:
- β State-of-the-art code quality for Microsoft NextCoder family
- β Superior reasoning and complex problem solving
- β Enterprise-grade completions for mission-critical applications
- β Best context understanding across the model family
π Original Model
This quantization is based on microsoft/NextCoder-32B by Microsoft.
For comprehensive information about:
- Model architecture and training methodology
- Capabilities, use cases, and limitations
- Evaluation benchmarks and results
- Ethical considerations and responsible AI guidelines
Please refer to the original model card.
π§ Hardware Requirements
Minimum (vLLM):
- GPU: NVIDIA A100 40GB or RTX 6000 Ada (48GB)
- VRAM: 32GB minimum, 40GB+ recommended
- CUDA: 11.8 or newer
Recommended (vLLM):
- GPU: NVIDIA H100 (80GB) / A100 80GB / RTX 6000 Ada (48GB)
- VRAM: 40GB+
- CUDA: 12.0+
Transformers:
- GPU: Multi-GPU setup (2x A100 40GB) or single A100/H100 80GB
- VRAM: 64GB+ total
- Not recommended - use vLLM instead
π Additional Resources
- vLLM Documentation: docs.vllm.ai
- TensorRT-LLM: github.com/NVIDIA/TensorRT-LLM
- TevunahAi Models: huggingface.co/TevunahAi
- llm-compressor: github.com/vllm-project/llm-compressor
π License
This model inherits the MIT License from the original NextCoder-32B model.
π Acknowledgments
- Original Model: Microsoft NextCoder team
- Quantization Framework: Neural Magic's llm-compressor
- Quantized by: TevunahAi
π Citation
If you use this model, please cite the original NextCoder work:
@misc{nextcoder2024,
title={NextCoder: Next-Generation Code LLM},
author={Microsoft},
year={2024},
url={https://huggingface.co/microsoft/NextCoder-32B}
}
Professional AI Model Quantization by TevunahAi
Making flagship models accessible through enterprise-grade quantization
- Downloads last month
- 30
Model tree for TevunahAi/NextCoder-32B-FP8
Base model
Qwen/Qwen2.5-32B