NextCoder-32B-FP8

High-quality FP8 quantization of Microsoft's NextCoder-32B, optimized for production inference

This is an FP8 (E4M3) quantized version of microsoft/NextCoder-32B using compressed_tensors format. Quantized by TevunahAi on enterprise-grade hardware with 2048 calibration samples.

🎯 Recommended Usage: vLLM (Required)

For 32B models, vLLM is essential for practical deployment. FP8 quantization makes this flagship model accessible on high-end consumer GPUs.

Quick Start with vLLM

pip install vllm

Python API:

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

# vLLM auto-detects FP8 from model config
llm = LLM(model="TevunahAi/NextCoder-32B-FP8", dtype="auto")

# Prepare prompt with chat template
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/NextCoder-32B-FP8")
messages = [{"role": "user", "content": "Write a Python function to calculate fibonacci numbers"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

# Generate
outputs = llm.generate(prompt, SamplingParams(temperature=0.7, max_tokens=512))
print(outputs[0].outputs[0].text)

OpenAI-Compatible API Server:

vllm serve TevunahAi/NextCoder-32B-FP8 \
    --dtype auto \
    --max-model-len 4096

Then use with OpenAI client:

from openai import OpenAI

client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="token-abc123",  # dummy key
)

response = client.chat.completions.create(
    model="TevunahAi/NextCoder-32B-FP8",
    messages=[
        {"role": "user", "content": "Write a Python function to calculate fibonacci numbers"}
    ],
    temperature=0.7,
    max_tokens=512,
)

print(response.choices[0].message.content)

vLLM Benefits

  • βœ… Weights, activations, and KV cache in FP8
  • βœ… ~32GB VRAM (50% reduction vs BF16's ~64GB)
  • βœ… Single high-end GPU deployment (H100, RTX 6000 Ada, A100 80GB)
  • βœ… Native FP8 tensor core acceleration
  • βœ… Production-grade performance

⚠️ Transformers: Not Practical

At 32B parameters, transformers will decompress to ~64GB+ VRAM, requiring multi-GPU setups or data center GPUs. This is not recommended for deployment.

Transformers Example (Multi-GPU Required - Click to expand)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Requires multi-GPU or 80GB+ single GPU
model = AutoModelForCausalLM.from_pretrained(
    "TevunahAi/NextCoder-32B-FP8",
    device_map="auto",  # Will distribute across GPUs
    torch_dtype="auto",
    low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/NextCoder-32B-FP8")

# Generate code
messages = [{"role": "user", "content": "Write a Python function to calculate fibonacci numbers"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)

outputs = model.generate(
    **inputs, 
    max_new_tokens=512,
    temperature=0.7,
    do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Requirements:

pip install torch>=2.1.0 transformers>=4.40.0 accelerate compressed-tensors

System Requirements:

  • ~64GB+ VRAM (decompressed to BF16)
  • Multi-GPU setup or A100 80GB / H100 80GB
  • Not practical for most deployments

⚠️ Critical: Use vLLM instead. Transformers is only viable for research/testing with multi-GPU setups.

πŸ“Š Quantization Details

Property Value
Base Model microsoft/NextCoder-32B
Quantization Method FP8 E4M3 weight-only
Framework llm-compressor + compressed_tensors
Storage Size ~32GB (sharded safetensors)
VRAM (vLLM) ~32GB
VRAM (Transformers) ~64GB+ (decompressed to BF16)
Target Hardware NVIDIA H100, A100 80GB, RTX 6000 Ada
Quantization Date November 23, 2025
Quantization Time 213.8 minutes

Quantization Infrastructure

Professional hardware ensures consistent, high-quality quantization:

  • CPUs: Dual Intel Xeon Max 9480 (112 cores / 224 threads, 128GB HBM2e)
  • GPU: NVIDIA RTX 5000 Ada Generation (32GB VRAM, native FP8 support)
  • Memory: 256GB DDR5 + 128GB HBM2e = 384GB total system memory
  • Software Stack: Ubuntu 25.10 | Python 3.12 | PyTorch 2.8 | CUDA 13.0 | llm-compressor

πŸ”§ Why FP8 for 32B Models?

With vLLM/TensorRT-LLM:

  • βœ… Enables single-GPU deployment (~32GB vs ~64GB BF16)
  • βœ… 50% memory reduction across weights, activations, and KV cache
  • βœ… Faster inference via native FP8 tensor cores
  • βœ… Makes flagship model accessible on high-end consumer/prosumer GPUs
  • βœ… Minimal quality loss (sub-1% perplexity increase)

Without FP8:

  • ❌ BF16 requires ~64GB VRAM (H100 80GB or multi-GPU)
  • ❌ Limited deployment options
  • ❌ Higher infrastructure costs

FP8 quantization transforms 32B from "data center only" to "high-end workstation deployable".

πŸ’Ύ Model Files

This model is sharded into multiple safetensors files (all required for inference). The compressed format enables efficient storage and faster downloads.

πŸš€ Performance Comparison

The 32B model represents the flagship tier:

Model VRAM (vLLM) Quality Use Case
7B-FP8 ~7GB Good General coding, fast iteration
14B-FP8 ~14GB Better Complex tasks, better reasoning
32B-FP8 ~32GB Best Flagship performance, production

32B Benefits:

  • βœ… State-of-the-art code quality for Microsoft NextCoder family
  • βœ… Superior reasoning and complex problem solving
  • βœ… Enterprise-grade completions for mission-critical applications
  • βœ… Best context understanding across the model family

πŸ“š Original Model

This quantization is based on microsoft/NextCoder-32B by Microsoft.

For comprehensive information about:

  • Model architecture and training methodology
  • Capabilities, use cases, and limitations
  • Evaluation benchmarks and results
  • Ethical considerations and responsible AI guidelines

Please refer to the original model card.

πŸ”§ Hardware Requirements

Minimum (vLLM):

  • GPU: NVIDIA A100 40GB or RTX 6000 Ada (48GB)
  • VRAM: 32GB minimum, 40GB+ recommended
  • CUDA: 11.8 or newer

Recommended (vLLM):

  • GPU: NVIDIA H100 (80GB) / A100 80GB / RTX 6000 Ada (48GB)
  • VRAM: 40GB+
  • CUDA: 12.0+

Transformers:

  • GPU: Multi-GPU setup (2x A100 40GB) or single A100/H100 80GB
  • VRAM: 64GB+ total
  • Not recommended - use vLLM instead

πŸ“– Additional Resources

πŸ“„ License

This model inherits the MIT License from the original NextCoder-32B model.

πŸ™ Acknowledgments

  • Original Model: Microsoft NextCoder team
  • Quantization Framework: Neural Magic's llm-compressor
  • Quantized by: TevunahAi

πŸ“ Citation

If you use this model, please cite the original NextCoder work:

@misc{nextcoder2024,
  title={NextCoder: Next-Generation Code LLM},
  author={Microsoft},
  year={2024},
  url={https://huggingface.co/microsoft/NextCoder-32B}
}

Professional AI Model Quantization by TevunahAi

Making flagship models accessible through enterprise-grade quantization

View all models | Contact for custom quantization

Downloads last month
30
Safetensors
Model size
33B params
Tensor type
F32
Β·
F8_E4M3
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for TevunahAi/NextCoder-32B-FP8

Base model

Qwen/Qwen2.5-32B
Quantized
(11)
this model

Collection including TevunahAi/NextCoder-32B-FP8