it-no-bio-20251014-t23

Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.

Trial timestamp (UTC): 2025-10-14 11:18:12

Data case: it

Configuration (trial hyperparameters)

Model: Alibaba-NLP/gte-multilingual-base

Hyperparameter Value
LANGUAGES it
LR 3e-05
EPOCHS 3
MAX_LENGTH 256
USE_BIO False
USE_LANG_TOKEN False
GATED_BIO False
FOCAL_LOSS True
FOCAL_GAMMA 2.5
USE_SAMPLER True
R_DROP True
R_KL_ALPHA 0.5
TEXT_NORMALIZE True

Dev set results (summary)

Metric Value
f1_macro_dev_0.5 0.913527851458886
f1_weighted_dev_0.5 0.9457421360108054
accuracy_dev_0.5 0.9447852760736196
f1_macro_dev_best_global 0.9255853388117132
f1_weighted_dev_best_global 0.9555707866148597
accuracy_dev_best_global 0.9570552147239264
f1_macro_dev_best_by_lang 0.9255853388117132
f1_weighted_dev_best_by_lang 0.9555707866148597
accuracy_dev_best_by_lang 0.9570552147239264
default_threshold 0.5
best_threshold_global 0.6
thresholds_by_lang {"it": 0.6}

Thresholds

  • Default: 0.5
  • Best global: 0.6
  • Best by language: { "it": 0.6 }

Detailed evaluation

Classification report @ 0.5

              precision    recall  f1-score   support

 no-recl (0)     0.9767    0.9545    0.9655       132
    recl (1)     0.8235    0.9032    0.8615        31

    accuracy                         0.9448       163
   macro avg     0.9001    0.9289    0.9135       163
weighted avg     0.9476    0.9448    0.9457       163

Classification report @ best global threshold (t=0.60)

              precision    recall  f1-score   support

 no-recl (0)     0.9562    0.9924    0.9740       132
    recl (1)     0.9615    0.8065    0.8772        31

    accuracy                         0.9571       163
   macro avg     0.9589    0.8994    0.9256       163
weighted avg     0.9572    0.9571    0.9556       163

Classification report @ best per-language thresholds

              precision    recall  f1-score   support

 no-recl (0)     0.9562    0.9924    0.9740       132
    recl (1)     0.9615    0.8065    0.8772        31

    accuracy                         0.9571       163
   macro avg     0.9589    0.8994    0.9256       163
weighted avg     0.9572    0.9571    0.9556       163

Per-language metrics (at best-by-lang)

lang n acc f1_macro f1_weighted prec_macro rec_macro prec_weighted rec_weighted
it 163 0.9571 0.9256 0.9556 0.9589 0.8994 0.9572 0.9571

Data

  • Train/Dev: private multilingual splits with ~15% stratified Dev (by (lang,label)).
  • Source: merged EN/IT/ES data with bios retained (ignored if unused by model).

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np

repo = "SimoneAstarita/it-no-bio-20251014-t23"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)

texts = ["example text ..."]
langs = ["en"]

mode = "best_global"  # or "0.5", "by_lang"

enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
    logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()

if mode == "0.5":
    th = 0.5
    preds = (probs >= th).astype(int)
elif mode == "best_global":
    th = getattr(cfg, "best_threshold_global", 0.5)
    preds = (probs >= th).astype(int)
elif mode == "by_lang":
    th_by_lang = getattr(cfg, "thresholds_by_lang", {})
    preds = np.zeros_like(probs, dtype=int)
    for lg in np.unique(langs):
        t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
        preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))

Additional files

reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.

Downloads last month
11
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support