Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. A RandomForestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 1 |
|
| 0 |
|
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("SOUMYADEEPSAR/Setfit_designed_sample_random_forest_head")
# Run inference
preds = model("What could possibly go wrong?")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 3 | 36.5327 | 97 |
| Label | Training Sample Count |
|---|---|
| 0 | 100 |
| 1 | 114 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0003 | 1 | 0.3958 | - |
| 0.0172 | 50 | 0.343 | - |
| 0.0345 | 100 | 0.2775 | - |
| 0.0517 | 150 | 0.2861 | - |
| 0.0689 | 200 | 0.1937 | - |
| 0.0861 | 250 | 0.0891 | - |
| 0.1034 | 300 | 0.0089 | - |
| 0.1206 | 350 | 0.0179 | - |
| 0.1378 | 400 | 0.0002 | - |
| 0.1551 | 450 | 0.0004 | - |
| 0.1723 | 500 | 0.0002 | - |
| 0.1895 | 550 | 0.0001 | - |
| 0.2068 | 600 | 0.0001 | - |
| 0.2240 | 650 | 0.0002 | - |
| 0.2412 | 700 | 0.0001 | - |
| 0.2584 | 750 | 0.0001 | - |
| 0.2757 | 800 | 0.0001 | - |
| 0.2929 | 850 | 0.0001 | - |
| 0.3101 | 900 | 0.0001 | - |
| 0.3274 | 950 | 0.0002 | - |
| 0.3446 | 1000 | 0.0 | - |
| 0.3618 | 1050 | 0.0001 | - |
| 0.3790 | 1100 | 0.0001 | - |
| 0.3963 | 1150 | 0.0001 | - |
| 0.4135 | 1200 | 0.0001 | - |
| 0.4307 | 1250 | 0.0001 | - |
| 0.4480 | 1300 | 0.0001 | - |
| 0.4652 | 1350 | 0.0 | - |
| 0.4824 | 1400 | 0.0 | - |
| 0.4997 | 1450 | 0.0 | - |
| 0.5169 | 1500 | 0.0 | - |
| 0.5341 | 1550 | 0.0001 | - |
| 0.5513 | 1600 | 0.0 | - |
| 0.5686 | 1650 | 0.0 | - |
| 0.5858 | 1700 | 0.0 | - |
| 0.6030 | 1750 | 0.0 | - |
| 0.6203 | 1800 | 0.0 | - |
| 0.6375 | 1850 | 0.0 | - |
| 0.6547 | 1900 | 0.0 | - |
| 0.6720 | 1950 | 0.0 | - |
| 0.6892 | 2000 | 0.0 | - |
| 0.7064 | 2050 | 0.0 | - |
| 0.7236 | 2100 | 0.0 | - |
| 0.7409 | 2150 | 0.0 | - |
| 0.7581 | 2200 | 0.0 | - |
| 0.7753 | 2250 | 0.0 | - |
| 0.7926 | 2300 | 0.0001 | - |
| 0.8098 | 2350 | 0.0001 | - |
| 0.8270 | 2400 | 0.0 | - |
| 0.8442 | 2450 | 0.0001 | - |
| 0.8615 | 2500 | 0.0 | - |
| 0.8787 | 2550 | 0.0 | - |
| 0.8959 | 2600 | 0.0 | - |
| 0.9132 | 2650 | 0.0 | - |
| 0.9304 | 2700 | 0.0 | - |
| 0.9476 | 2750 | 0.0 | - |
| 0.9649 | 2800 | 0.0 | - |
| 0.9821 | 2850 | 0.0 | - |
| 0.9993 | 2900 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}