|
|
--- |
|
|
library_name: transformers |
|
|
license: other |
|
|
license_name: lfm1.0 |
|
|
license_link: LICENSE |
|
|
language: |
|
|
- en |
|
|
- ar |
|
|
- zh |
|
|
- fr |
|
|
- de |
|
|
- ja |
|
|
- ko |
|
|
- es |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- liquid |
|
|
- lfm2 |
|
|
- edge |
|
|
base_model: LiquidAI/LFM2-1.2B |
|
|
--- |
|
|
|
|
|
<center> |
|
|
<div style="text-align: center;"> |
|
|
<img |
|
|
src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/2b08LKpev0DNEk6DlnWkY.png" |
|
|
alt="Liquid AI" |
|
|
style="width: 100%; max-width: 100%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;" |
|
|
/> |
|
|
</div> |
|
|
<div style="display: flex; justify-content: center; gap: 0.5em;"> |
|
|
<a href="https://playground.liquid.ai/chat"> |
|
|
<a href="https://playground.liquid.ai/"><strong>Try LFM</strong></a> β’ <a href="https://docs.liquid.ai/lfm"><strong>Documentation</strong></a> β’ <a href="https://leap.liquid.ai/"><strong>LEAP</strong></a></a> |
|
|
</div> |
|
|
</center> |
|
|
|
|
|
# LFM2-1.2B-Tool |
|
|
|
|
|
Based on [LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B), LFM2-1.2B-Tool is designed for **concise and precise tool calling**. The key challenge was designing a non-thinking model that outperforms similarly sized thinking models for tool use. |
|
|
|
|
|
**Use cases**: |
|
|
|
|
|
- Mobile and edge devices requiring instant API calls, database queries, or system integrations without cloud dependency. |
|
|
- Real-time assistants in cars, IoT devices, or customer support, where response latency is critical. |
|
|
- Resource-constrained environments like embedded systems or battery-powered devices needing efficient tool execution. |
|
|
|
|
|
You can find more information about other task-specific models in this [blog post](https://www.liquid.ai/blog/introducing-liquid-nanos-frontier-grade-performance-on-everyday-devices). |
|
|
|
|
|
## π Model details |
|
|
|
|
|
**Generation parameters**: We recommend using greedy decoding with a `temperature=0`. |
|
|
|
|
|
**System prompt**: The system prompt must provide all the available tools |
|
|
|
|
|
**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, Portuguese, and Spanish. |
|
|
|
|
|
 |
|
|
|
|
|
**Tool use**: It consists of four main steps: |
|
|
1. **Function definition**: LFM2 takes JSON function definitions as input (JSON objects between `<|tool_list_start|>` and `<|tool_list_end|>` special tokens), usually in the system prompt |
|
|
2. **Function call**: LFM2 writes Pythonic function calls (a Python list between `<|tool_call_start|>` and `<|tool_call_end|>` special tokens), as the assistant answer. |
|
|
3. **Function execution**: The function call is executed and the result is returned (string between `<|tool_response_start|>` and `<|tool_response_end|>` special tokens), as a "tool" role. |
|
|
4. **Final answer**: LFM2 interprets the outcome of the function call to address the original user prompt in plain text. |
|
|
|
|
|
Here is a simple example of a conversation using tool use: |
|
|
|
|
|
``` |
|
|
<|startoftext|><|im_start|>system |
|
|
List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|> |
|
|
<|im_start|>user |
|
|
What is the current status of candidate ID 12345?<|im_end|> |
|
|
<|im_start|>assistant |
|
|
<|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|> |
|
|
<|im_start|>tool |
|
|
<|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|> |
|
|
<|im_start|>assistant |
|
|
The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|> |
|
|
``` |
|
|
|
|
|
> [!WARNING] |
|
|
> β οΈ The model supports both single-turn and multi-turn conversations. |
|
|
|
|
|
## π Performance |
|
|
|
|
|
For edge inference, latency is a crucial factor in delivering a seamless and satisfactory user experience. Consequently, while test-time-compute inherently provides more accuracy, it ultimately compromises the user experience due to increased waiting times for function calls. |
|
|
|
|
|
Therefore, the goal was to develop a tool calling model that is competitive with thinking models, yet operates without any internal chain-of-thought process. |
|
|
|
|
|
 |
|
|
|
|
|
We evaluated each model on a proprietary benchmark that was specifically designed to prevent data contamination. The benchmark ensures that performance metrics reflect genuine tool-calling capabilities rather than memorized patterns from training data. |
|
|
|
|
|
## π How to run |
|
|
|
|
|
- Hugging Face: [LFM2-1.2B-Tool](https://huggingface.co/LiquidAI/LFM2-1.2B-Tool) |
|
|
- llama.cpp: [LFM2-1.2B-Tool-GGUF](https://huggingface.co/LiquidAI/LFM2-1.2B-Tool-GGUF) |
|
|
- LEAP: [LEAP model library](https://leap.liquid.ai/models?model=lfm2-1.2b-tool) |
|
|
|
|
|
You can use the following Colab notebooks for easy inference and fine-tuning: |
|
|
|
|
|
| Notebook | Description | Link | |
|
|
|-------|------|------| |
|
|
| Inference | Run the model with Hugging Face's transformers library. | <a href="https://colab.research.google.com/drive/1_HFBuNROTnI-SSZ2zEpqpjJ6SnrsWCU3?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> | |
|
|
| SFT (TRL) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using TRL. | <a href="https://colab.research.google.com/drive/1j5Hk_SyBb2soUsuhU0eIEA9GwLNRnElF?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> | |
|
|
| DPO (TRL) | Preference alignment with Direct Preference Optimization (DPO) using TRL. | <a href="https://colab.research.google.com/drive/1MQdsPxFHeZweGsNx4RH7Ia8lG8PiGE1t?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> | |
|
|
| SFT (Axolotl) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using Axolotl. | <a href="https://colab.research.google.com/drive/155lr5-uYsOJmZfO6_QZPjbs8hA_v8S7t?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> | |
|
|
| SFT (Unsloth) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using Unsloth. | <a href="https://colab.research.google.com/drive/1HROdGaPFt1tATniBcos11-doVaH7kOI3?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> | |
|
|
|
|
|
## π¬ Contact |
|
|
|
|
|
If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact). |
|
|
|
|
|
## Citation |
|
|
|
|
|
``` |
|
|
@article{liquidai2025lfm2, |
|
|
title={LFM2 Technical Report}, |
|
|
author={Liquid AI}, |
|
|
journal={arXiv preprint arXiv:2511.23404}, |
|
|
year={2025} |
|
|
} |
|
|
``` |