maaza-nlm-orchestrator-9.6m

70% tool-routing accuracy ยท 70ms average latency ยท 9.60M parameters

The fastest production-ready orchestrator under 20M parameters. The official routing brain for the MCPBodega ecosystem.


NLM Taxonomy (CycleCore, 2025)

Category Parameters Typical Capability
NLM <10M Routing, classification, orchestration
MLM 10โ€“250M Structured extraction
SLM 250Mโ€“1.5B Reliable reasoning + extraction
LLM >1.5B General-purpose reasoning

maaza-nlm-orchestrator-9.6m is the current flagship of the NLM category.

For the full taxonomy and research, see the Maaza Paper v0.7


Model Card

Metric Value
Parameters 9,600,000
Architecture 7-layer Transformer decoder, SwiGLU, RoPE
Hidden size / Heads 320 / 8
Vocabulary 8,000 (BPE, tool-aware)
Context length 512 tokens

Trained exclusively on 36 real, production-ready MCP tools from MCPBodega (Doom, Puppeteer, code execution, file I/O, database queries, etc.). No synthetic or placeholder tools.


Benchmarks (verified December 2025)

Metric Value Notes
Tool selection accuracy 70% Held-out evaluation (100 samples)
Valid structured output 88% Parsable JSON output
Average inference latency 70ms RTX 4080, fp16, batch=1
Parameters 9,600,000

Initial reports of 90% were aspirational targets. Verified held-out performance is 70% tool selection with 88% valid output.

Comparison

Model Parameters Tool Accuracy Latency
maaza-nlm-orchestrator-9.6m 9.6M 70% 70ms
NVIDIA Orchestrator-8B 8B 78% โ‰ฅ800ms
Gorilla-7B 7B 52โ€“58% 1โ€“3s
ToolLlama-7B 7B 48โ€“55% 2โ€“4s

Ranks #1 under 20M parameters on latency-adjusted tool routing.


One-line deployment

mcpbodega deploy nano-orchestrator

Usage Example (PyTorch)

from model import MaazaNanoModel, MaazaNanoConfig
from tokenizer import BPETokenizer
import torch, json

tokenizer = BPETokenizer.load("tokenizer.json")
config = MaazaNanoConfig(**json.load(open("config.json")))
model = MaazaNanoModel(config)
model.load_state_dict(torch.load("model.pt", weights_only=True))
model.eval().cuda()

prompt = "<|user|>search for cats on the internet<|assistant|>"
input_ids = torch.tensor([tokenizer.encode(prompt)]).cuda()

with torch.no_grad():
    for _ in range(64):
        logits = model(input_ids)["logits"]
        next_token = logits[0, -1].argmax(-1)
        input_ids = torch.cat([input_ids, next_token[None, None]], dim=-1)
        if next_token.item() in tokenizer.special_tokens.values():
            break

print(tokenizer.decode(input_ids[0].tolist()))
# โ†’ [{"tool": "web_search", "params": {"query": "cats"}}]

Supported Tools (36)

Tool Description
web_search Search the web
web_fetch Fetch URL content
file_read Read local files
file_write Write local files
code_execute_python Run Python code
code_execute_bash Run shell commands
code_execute_js Run JavaScript
email_send Send emails
slack_send Send Slack messages
calendar_add Create calendar events
database_query Query databases
puppeteer_navigate Browser navigation
puppeteer_click Browser clicks
puppeteer_screenshot Take screenshots
doom_mcp Play Doom
bitchat_send BLE mesh chat
voice_mcp Text-to-speech
maaza_extract_json Extract structured data
json_validate Validate JSON
csv_parse Parse CSV files
regex_match Pattern matching
calculator Math operations
weather_lookup Weather data
crypto_lookup Crypto prices
stock_lookup Stock prices
news_fetch News headlines
mcpbodega_chat MCPBodega chat rooms
mcpbodega_deploy Deploy MCPs
mcpbodega_list List MCPs
github_issue Create GitHub issues
scratchpad_mcp Temporary storage
health_check Service health checks
cyclecore_terminal Terminal commands
image_caption Image descriptions
slmbench_query Benchmark queries
translator Translation

License

Apache 2.0


Citation

@misc{cyclecore2025maaza-nlm,
  author       = {CycleCore},
  title        = {Maaza NLM Orchestrator 9.6M: 70% Tool-Routing at 70ms},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/cyclecore/maaza-nlm-orchestrator-9.6m}
}

Built with MCPBodega ยท December 2025

Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results