Update README.md
#1
by
Slenser0
- opened
README.md
CHANGED
|
@@ -1,148 +1,163 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
tags:
|
| 4 |
-
- siglip
|
| 5 |
-
- vision
|
| 6 |
-
- clip
|
| 7 |
-
- image-embeddings
|
| 8 |
-
- pet-recognition
|
| 9 |
-
model_id: AvitoTech/SigLIP-Base-for-animal-identification
|
| 10 |
-
pipeline_tag: image-feature-extraction
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
# SigLIP-Base Fine-tuned for Animal Identification
|
| 14 |
-
|
| 15 |
-
Fine-tuned SigLIP-Base model for individual animal identification, specializing in distinguishing between unique cats and dogs. This model produces robust image embeddings optimized for pet recognition, re-identification, and verification tasks.
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
## Model Details
|
| 19 |
-
|
| 20 |
-
- **Base Model**: google/siglip-base-patch16-224
|
| 21 |
-
- **Input**: Images (224x224)
|
| 22 |
-
- **Output**: Image embeddings (768-dimensional)
|
| 23 |
-
- **Task**: Individual animal identification and verification
|
| 24 |
-
|
| 25 |
-
## Training Data
|
| 26 |
-
|
| 27 |
-
The model was trained on a comprehensive dataset combining multiple sources:
|
| 28 |
-
|
| 29 |
-
- **[PetFace Dataset](https://arxiv.org/abs/2407.13555)**: Large-scale animal face dataset with 257,484 unique individuals across 13 animal families
|
| 30 |
-
- **[Dogs-World](https://www.kaggle.com/datasets/lextoumbourou/dogs-world)**: Kaggle dataset for dog breed and individual identification
|
| 31 |
-
- **[LCW (Labeled Cats in the Wild)](https://www.kaggle.com/datasets/dseidli/lcwlabeled-cats-in-the-wild)**: Cat identification dataset
|
| 32 |
-
- **Web-scraped Data**: Additional curated images from various sources
|
| 33 |
-
|
| 34 |
-
**Total Dataset Statistics:**
|
| 35 |
-
- **1,904,157** total photographs
|
| 36 |
-
- **695,091** unique individual animals (cats and dogs)
|
| 37 |
-
|
| 38 |
-
## Training Details
|
| 39 |
-
|
| 40 |
-
**Training Configuration:**
|
| 41 |
-
- **Batch Size**: 116 samples (58 unique identities × 2 photos each)
|
| 42 |
-
- **Optimizer**: Adam with learning rate 1e-4
|
| 43 |
-
- **Training Duration**: 10 epochs
|
| 44 |
-
- **Transfer Learning**: Final 5 transformer blocks unfrozen, lower layers frozen to preserve pre-trained features
|
| 45 |
-
|
| 46 |
-
**Loss Function:**
|
| 47 |
-
The model is trained using a combined loss function consisting of:
|
| 48 |
-
1. **Triplet Loss** (margin α=0.45): Encourages separation between different animal identities
|
| 49 |
-
2. **Intra-Pair Variance Regularization** (ε=0.01): Promotes consistency across multiple photos of the same animal
|
| 50 |
-
|
| 51 |
-
Combined as: L_total = 1.0 × L_triplet + 0.5 × L_var
|
| 52 |
-
|
| 53 |
-
This approach creates compact feature clusters for each individual animal while maintaining large separation between different identities.
|
| 54 |
-
|
| 55 |
-
## Performance Metrics
|
| 56 |
-
|
| 57 |
-
The model has been benchmarked against various vision encoders on multiple pet recognition datasets:
|
| 58 |
-
|
| 59 |
-
### [Cat Individual Images Dataset](https://www.kaggle.com/datasets/timost1234/cat-individuals)
|
| 60 |
-
|
| 61 |
-
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|
| 62 |
-
|-------|---------|-----|-------|-------|--------|
|
| 63 |
-
| CLIP-ViT-Base | 0.9821 | 0.0604 | 0.8359 | 0.9579 | 0.9711 |
|
| 64 |
-
| DINOv2-Small | 0.9904 | 0.0422 | 0.8547 | 0.9660 | 0.9764 |
|
| 65 |
-
| **SigLIP-Base** | **0.9899** | **0.0390** | **0.8649** | **0.9757** | **0.9842** |
|
| 66 |
-
| SigLIP2-Base | 0.9894 | 0.0388 | 0.8660 | 0.9772 | 0.9863 |
|
| 67 |
-
| Zer0int CLIP-L | 0.9881 | 0.0509 | 0.8768 | 0.9767 | 0.9845 |
|
| 68 |
-
| SigLIP2-Giant | 0.9940 | 0.0344 | 0.8899 | 0.9868 | 0.9921 |
|
| 69 |
-
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9929 | 0.0344 | 0.8952 | 0.9872 | 0.9932 |
|
| 70 |
-
|
| 71 |
-
### [DogFaceNet Dataset](https://www.springerprofessional.de/en/a-deep-learning-approach-for-dog-face-verification-and-recogniti/17094782)
|
| 72 |
-
|
| 73 |
-
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|
| 74 |
-
|-------|---------|-----|-------|-------|--------|
|
| 75 |
-
| CLIP-ViT-Base | 0.9739 | 0.0772 | 0.4350 | 0.6417 | 0.7204 |
|
| 76 |
-
| DINOv2-Small | 0.9829 | 0.0571 | 0.5581 | 0.7540 | 0.8139 |
|
| 77 |
-
| **SigLIP-Base** | **0.9792** | **0.0606** | **0.5848** | **0.7746** | **0.8319** |
|
| 78 |
-
| SigLIP2-Base | 0.9776 | 0.0672 | 0.5925 | 0.7856 | 0.8422 |
|
| 79 |
-
| Zer0int CLIP-L | 0.9814 | 0.0625 | 0.6289 | 0.8092 | 0.8597 |
|
| 80 |
-
| SigLIP2-Giant | 0.9926 | 0.0326 | 0.7475 | 0.9009 | 0.9316 |
|
| 81 |
-
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9920 | 0.0314 | 0.7818 | 0.9233 | 0.9482 |
|
| 82 |
-
|
| 83 |
-
### Combined Test Dataset (Overall Performance)
|
| 84 |
-
|
| 85 |
-
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|
| 86 |
-
|-------|---------|-----|-------|-------|--------|
|
| 87 |
-
| CLIP-ViT-Base | 0.9752 | 0.0729 | 0.6511 | 0.8122 | 0.8555 |
|
| 88 |
-
| DINOv2-Small | 0.9848 | 0.0546 | 0.7180 | 0.8678 | 0.9009 |
|
| 89 |
-
| **SigLIP-Base** | **0.9811** | **0.0572** | **0.7359** | **0.8831** | **0.9140** |
|
| 90 |
-
| SigLIP2-Base | 0.9793 | 0.0631 | 0.7400 | 0.8889 | 0.9197 |
|
| 91 |
-
| Zer0int CLIP-L | 0.9842 | 0.0565 | 0.7626 | 0.8994 | 0.9267 |
|
| 92 |
-
| SigLIP2-Giant | 0.9912 | 0.0378 | 0.8243 | 0.9471 | 0.9641 |
|
| 93 |
-
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9882 | 0.0422 | 0.8428 | 0.9576 | 0.9722 |
|
| 94 |
-
|
| 95 |
-
**Metrics Explanation:**
|
| 96 |
-
- **ROC AUC**: Area Under the Receiver Operating Characteristic Curve - measures the model's ability to distinguish between different individuals
|
| 97 |
-
- **EER**: Equal Error Rate - the error rate where false acceptance and false rejection rates are equal
|
| 98 |
-
- **Top-K**: Accuracy of correct identification within the top K predictions
|
| 99 |
-
|
| 100 |
-
## Basic Usage
|
| 101 |
-
|
| 102 |
-
### Installation
|
| 103 |
-
|
| 104 |
-
```bash
|
| 105 |
-
pip install transformers torch pillow
|
| 106 |
-
```
|
| 107 |
-
|
| 108 |
-
### Get Image Embedding
|
| 109 |
-
|
| 110 |
-
```python
|
| 111 |
-
import torch
|
| 112 |
-
import torch.nn
|
| 113 |
-
|
| 114 |
-
from
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- siglip
|
| 5 |
+
- vision
|
| 6 |
+
- clip
|
| 7 |
+
- image-embeddings
|
| 8 |
+
- pet-recognition
|
| 9 |
+
model_id: AvitoTech/SigLIP-Base-for-animal-identification
|
| 10 |
+
pipeline_tag: image-feature-extraction
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# SigLIP-Base Fine-tuned for Animal Identification
|
| 14 |
+
|
| 15 |
+
Fine-tuned SigLIP-Base model for individual animal identification, specializing in distinguishing between unique cats and dogs. This model produces robust image embeddings optimized for pet recognition, re-identification, and verification tasks.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
|
| 20 |
+
- **Base Model**: google/siglip-base-patch16-224
|
| 21 |
+
- **Input**: Images (224x224)
|
| 22 |
+
- **Output**: Image embeddings (768-dimensional)
|
| 23 |
+
- **Task**: Individual animal identification and verification
|
| 24 |
+
|
| 25 |
+
## Training Data
|
| 26 |
+
|
| 27 |
+
The model was trained on a comprehensive dataset combining multiple sources:
|
| 28 |
+
|
| 29 |
+
- **[PetFace Dataset](https://arxiv.org/abs/2407.13555)**: Large-scale animal face dataset with 257,484 unique individuals across 13 animal families
|
| 30 |
+
- **[Dogs-World](https://www.kaggle.com/datasets/lextoumbourou/dogs-world)**: Kaggle dataset for dog breed and individual identification
|
| 31 |
+
- **[LCW (Labeled Cats in the Wild)](https://www.kaggle.com/datasets/dseidli/lcwlabeled-cats-in-the-wild)**: Cat identification dataset
|
| 32 |
+
- **Web-scraped Data**: Additional curated images from various sources
|
| 33 |
+
|
| 34 |
+
**Total Dataset Statistics:**
|
| 35 |
+
- **1,904,157** total photographs
|
| 36 |
+
- **695,091** unique individual animals (cats and dogs)
|
| 37 |
+
|
| 38 |
+
## Training Details
|
| 39 |
+
|
| 40 |
+
**Training Configuration:**
|
| 41 |
+
- **Batch Size**: 116 samples (58 unique identities × 2 photos each)
|
| 42 |
+
- **Optimizer**: Adam with learning rate 1e-4
|
| 43 |
+
- **Training Duration**: 10 epochs
|
| 44 |
+
- **Transfer Learning**: Final 5 transformer blocks unfrozen, lower layers frozen to preserve pre-trained features
|
| 45 |
+
|
| 46 |
+
**Loss Function:**
|
| 47 |
+
The model is trained using a combined loss function consisting of:
|
| 48 |
+
1. **Triplet Loss** (margin α=0.45): Encourages separation between different animal identities
|
| 49 |
+
2. **Intra-Pair Variance Regularization** (ε=0.01): Promotes consistency across multiple photos of the same animal
|
| 50 |
+
|
| 51 |
+
Combined as: L_total = 1.0 × L_triplet + 0.5 × L_var
|
| 52 |
+
|
| 53 |
+
This approach creates compact feature clusters for each individual animal while maintaining large separation between different identities.
|
| 54 |
+
|
| 55 |
+
## Performance Metrics
|
| 56 |
+
|
| 57 |
+
The model has been benchmarked against various vision encoders on multiple pet recognition datasets:
|
| 58 |
+
|
| 59 |
+
### [Cat Individual Images Dataset](https://www.kaggle.com/datasets/timost1234/cat-individuals)
|
| 60 |
+
|
| 61 |
+
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|
| 62 |
+
|-------|---------|-----|-------|-------|--------|
|
| 63 |
+
| CLIP-ViT-Base | 0.9821 | 0.0604 | 0.8359 | 0.9579 | 0.9711 |
|
| 64 |
+
| DINOv2-Small | 0.9904 | 0.0422 | 0.8547 | 0.9660 | 0.9764 |
|
| 65 |
+
| **SigLIP-Base** | **0.9899** | **0.0390** | **0.8649** | **0.9757** | **0.9842** |
|
| 66 |
+
| SigLIP2-Base | 0.9894 | 0.0388 | 0.8660 | 0.9772 | 0.9863 |
|
| 67 |
+
| Zer0int CLIP-L | 0.9881 | 0.0509 | 0.8768 | 0.9767 | 0.9845 |
|
| 68 |
+
| SigLIP2-Giant | 0.9940 | 0.0344 | 0.8899 | 0.9868 | 0.9921 |
|
| 69 |
+
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9929 | 0.0344 | 0.8952 | 0.9872 | 0.9932 |
|
| 70 |
+
|
| 71 |
+
### [DogFaceNet Dataset](https://www.springerprofessional.de/en/a-deep-learning-approach-for-dog-face-verification-and-recogniti/17094782)
|
| 72 |
+
|
| 73 |
+
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|
| 74 |
+
|-------|---------|-----|-------|-------|--------|
|
| 75 |
+
| CLIP-ViT-Base | 0.9739 | 0.0772 | 0.4350 | 0.6417 | 0.7204 |
|
| 76 |
+
| DINOv2-Small | 0.9829 | 0.0571 | 0.5581 | 0.7540 | 0.8139 |
|
| 77 |
+
| **SigLIP-Base** | **0.9792** | **0.0606** | **0.5848** | **0.7746** | **0.8319** |
|
| 78 |
+
| SigLIP2-Base | 0.9776 | 0.0672 | 0.5925 | 0.7856 | 0.8422 |
|
| 79 |
+
| Zer0int CLIP-L | 0.9814 | 0.0625 | 0.6289 | 0.8092 | 0.8597 |
|
| 80 |
+
| SigLIP2-Giant | 0.9926 | 0.0326 | 0.7475 | 0.9009 | 0.9316 |
|
| 81 |
+
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9920 | 0.0314 | 0.7818 | 0.9233 | 0.9482 |
|
| 82 |
+
|
| 83 |
+
### Combined Test Dataset (Overall Performance)
|
| 84 |
+
|
| 85 |
+
| Model | ROC AUC | EER | Top-1 | Top-5 | Top-10 |
|
| 86 |
+
|-------|---------|-----|-------|-------|--------|
|
| 87 |
+
| CLIP-ViT-Base | 0.9752 | 0.0729 | 0.6511 | 0.8122 | 0.8555 |
|
| 88 |
+
| DINOv2-Small | 0.9848 | 0.0546 | 0.7180 | 0.8678 | 0.9009 |
|
| 89 |
+
| **SigLIP-Base** | **0.9811** | **0.0572** | **0.7359** | **0.8831** | **0.9140** |
|
| 90 |
+
| SigLIP2-Base | 0.9793 | 0.0631 | 0.7400 | 0.8889 | 0.9197 |
|
| 91 |
+
| Zer0int CLIP-L | 0.9842 | 0.0565 | 0.7626 | 0.8994 | 0.9267 |
|
| 92 |
+
| SigLIP2-Giant | 0.9912 | 0.0378 | 0.8243 | 0.9471 | 0.9641 |
|
| 93 |
+
| SigLIP2-Giant + E5-Small-v2 + gating | 0.9882 | 0.0422 | 0.8428 | 0.9576 | 0.9722 |
|
| 94 |
+
|
| 95 |
+
**Metrics Explanation:**
|
| 96 |
+
- **ROC AUC**: Area Under the Receiver Operating Characteristic Curve - measures the model's ability to distinguish between different individuals
|
| 97 |
+
- **EER**: Equal Error Rate - the error rate where false acceptance and false rejection rates are equal
|
| 98 |
+
- **Top-K**: Accuracy of correct identification within the top K predictions
|
| 99 |
+
|
| 100 |
+
## Basic Usage
|
| 101 |
+
|
| 102 |
+
### Installation
|
| 103 |
+
|
| 104 |
+
```bash
|
| 105 |
+
pip install transformers torch pillow
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### Get Image Embedding
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
import torch
|
| 112 |
+
import torch.nn as nn
|
| 113 |
+
import torch.nn.functional as F
|
| 114 |
+
from PIL import Image
|
| 115 |
+
from transformers import SiglipModel, SiglipProcessor
|
| 116 |
+
from safetensors.torch import load_file
|
| 117 |
+
from huggingface_hub import hf_hub_download
|
| 118 |
+
|
| 119 |
+
class Model(nn.Module):
|
| 120 |
+
def __init__(self):
|
| 121 |
+
super().__init__()
|
| 122 |
+
ckpt = "google/siglip-base-patch16-224"
|
| 123 |
+
self.clip = SiglipModel.from_pretrained(ckpt)
|
| 124 |
+
self.processor = SiglipProcessor.from_pretrained(ckpt)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def forward(self, images):
|
| 128 |
+
clip_inputs = self.processor(images=images, return_tensors="pt").to(self.clip.device)
|
| 129 |
+
return self.clip.get_image_features(**clip_inputs)
|
| 130 |
+
|
| 131 |
+
model = Model()
|
| 132 |
+
|
| 133 |
+
weights_path = hf_hub_download(repo_id="AvitoTech/SigLIP-Base-for-animal-identification", filename="model.safetensors")
|
| 134 |
+
state_dict = load_file(weights_path)
|
| 135 |
+
model.load_state_dict(state_dict)
|
| 136 |
+
|
| 137 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 138 |
+
model = model.to(device).eval()
|
| 139 |
+
|
| 140 |
+
image = Image.open("your_image.jpg").convert("RGB")
|
| 141 |
+
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
embedding = model([image])
|
| 144 |
+
embedding = F.normalize(embedding, dim=1)
|
| 145 |
+
|
| 146 |
+
print(f"Embedding shape: {embedding.shape}") # Embedding shape: torch.Size([1, 768])
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
## Citation
|
| 150 |
+
|
| 151 |
+
If you use this model in your research or applications, please cite our work:
|
| 152 |
+
|
| 153 |
+
```
|
| 154 |
+
BibTeX citation will be added upon paper publication.
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
## Use Cases
|
| 158 |
+
|
| 159 |
+
- Individual pet identification and re-identification
|
| 160 |
+
- Lost and found pet matching systems
|
| 161 |
+
- Veterinary record management
|
| 162 |
+
- Animal behavior monitoring
|
| 163 |
+
- Wildlife conservation and tracking
|