Yukirsh commited on
Commit
892f583
·
verified ·
1 Parent(s): ae5face

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/gruntdata/event_graph/llm_models/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step262
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2405c80e4ecc7508ec4db3fa5e6301fbe90e96c59ee21668d2e4d2746bb2455
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcfa6e619467636a201d15d151e28e30da870ace525076ce69caf6599df0b842
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9cd60a89a9b04aad75dafd852316bc6a102357a88d9095b0dde203e41f8f70
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22fa26d92c21dc26a0e25aa3aecb4a6e1919aece75f88e057b8e112fbf237c86
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:636b9316043a83033cce566847f96f6f04de1799464b9db62e6755acb2834eff
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 8192,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
trainer_state.json ADDED
@@ -0,0 +1,1881 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9745042492917846,
5
+ "eval_steps": 500,
6
+ "global_step": 264,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0113314447592068,
13
+ "grad_norm": 24.700892966997085,
14
+ "learning_rate": 1.8518518518518518e-07,
15
+ "loss": 1.6228,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0226628895184136,
20
+ "grad_norm": 25.319873190341358,
21
+ "learning_rate": 3.7037037037037036e-07,
22
+ "loss": 1.6327,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0339943342776204,
27
+ "grad_norm": 24.785410230478583,
28
+ "learning_rate": 5.555555555555555e-07,
29
+ "loss": 1.6085,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0453257790368272,
34
+ "grad_norm": 24.530949684513566,
35
+ "learning_rate": 7.407407407407407e-07,
36
+ "loss": 1.5921,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.056657223796033995,
41
+ "grad_norm": 21.437475590002645,
42
+ "learning_rate": 9.259259259259259e-07,
43
+ "loss": 1.4876,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0679886685552408,
48
+ "grad_norm": 23.598738552751918,
49
+ "learning_rate": 1.111111111111111e-06,
50
+ "loss": 1.5618,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.07932011331444759,
55
+ "grad_norm": 24.355821351281282,
56
+ "learning_rate": 1.2962962962962962e-06,
57
+ "loss": 1.5728,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0906515580736544,
62
+ "grad_norm": 17.949944552531893,
63
+ "learning_rate": 1.4814814814814815e-06,
64
+ "loss": 1.3796,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.10198300283286119,
69
+ "grad_norm": 15.608410231061514,
70
+ "learning_rate": 1.6666666666666667e-06,
71
+ "loss": 1.3663,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.11331444759206799,
76
+ "grad_norm": 12.967898302916174,
77
+ "learning_rate": 1.8518518518518519e-06,
78
+ "loss": 1.2852,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.12464589235127478,
83
+ "grad_norm": 5.5745605303959005,
84
+ "learning_rate": 2.037037037037037e-06,
85
+ "loss": 1.1179,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1359773371104816,
90
+ "grad_norm": 5.003567410730206,
91
+ "learning_rate": 2.222222222222222e-06,
92
+ "loss": 1.1428,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.14730878186968838,
97
+ "grad_norm": 4.580788434319785,
98
+ "learning_rate": 2.4074074074074075e-06,
99
+ "loss": 1.1386,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.15864022662889518,
104
+ "grad_norm": 4.208213518050668,
105
+ "learning_rate": 2.5925925925925925e-06,
106
+ "loss": 1.1171,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.16997167138810199,
111
+ "grad_norm": 3.6924260397238076,
112
+ "learning_rate": 2.7777777777777783e-06,
113
+ "loss": 0.9945,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.1813031161473088,
118
+ "grad_norm": 4.282401825239783,
119
+ "learning_rate": 2.962962962962963e-06,
120
+ "loss": 1.0298,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.19263456090651557,
125
+ "grad_norm": 3.998142705803431,
126
+ "learning_rate": 3.1481481481481483e-06,
127
+ "loss": 0.998,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.20396600566572237,
132
+ "grad_norm": 3.652954638326853,
133
+ "learning_rate": 3.3333333333333333e-06,
134
+ "loss": 1.0252,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.21529745042492918,
139
+ "grad_norm": 3.1106976788005833,
140
+ "learning_rate": 3.5185185185185187e-06,
141
+ "loss": 0.948,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.22662889518413598,
146
+ "grad_norm": 2.3583842636458874,
147
+ "learning_rate": 3.7037037037037037e-06,
148
+ "loss": 0.9141,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.23796033994334279,
153
+ "grad_norm": 2.331383902586234,
154
+ "learning_rate": 3.88888888888889e-06,
155
+ "loss": 0.91,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.24929178470254956,
160
+ "grad_norm": 2.3290851154332155,
161
+ "learning_rate": 4.074074074074074e-06,
162
+ "loss": 0.92,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.26062322946175637,
167
+ "grad_norm": 2.088852025013323,
168
+ "learning_rate": 4.2592592592592596e-06,
169
+ "loss": 0.8521,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2719546742209632,
174
+ "grad_norm": 1.8360508671725202,
175
+ "learning_rate": 4.444444444444444e-06,
176
+ "loss": 0.8143,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.28328611898017,
181
+ "grad_norm": 1.7885693902522186,
182
+ "learning_rate": 4.62962962962963e-06,
183
+ "loss": 0.8486,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.29461756373937675,
188
+ "grad_norm": 1.9031889309290633,
189
+ "learning_rate": 4.814814814814815e-06,
190
+ "loss": 0.834,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.3059490084985836,
195
+ "grad_norm": 1.6679534815550068,
196
+ "learning_rate": 5e-06,
197
+ "loss": 0.8224,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.31728045325779036,
202
+ "grad_norm": 1.6886754763902796,
203
+ "learning_rate": 4.999780362391087e-06,
204
+ "loss": 0.8133,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.3286118980169972,
209
+ "grad_norm": 1.8004804802995344,
210
+ "learning_rate": 4.9991214881568884e-06,
211
+ "loss": 0.8145,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.33994334277620397,
216
+ "grad_norm": 1.7444546855121879,
217
+ "learning_rate": 4.998023493068255e-06,
218
+ "loss": 0.8028,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.35127478753541075,
223
+ "grad_norm": 1.6882783810092117,
224
+ "learning_rate": 4.996486570053999e-06,
225
+ "loss": 0.784,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.3626062322946176,
230
+ "grad_norm": 1.7424306321156553,
231
+ "learning_rate": 4.994510989166998e-06,
232
+ "loss": 0.802,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.37393767705382436,
237
+ "grad_norm": 1.5326860366155606,
238
+ "learning_rate": 4.99209709753674e-06,
239
+ "loss": 0.7578,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.38526912181303113,
244
+ "grad_norm": 1.645466819050736,
245
+ "learning_rate": 4.9892453193083354e-06,
246
+ "loss": 0.7715,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.39660056657223797,
251
+ "grad_norm": 1.8351805495790603,
252
+ "learning_rate": 4.9859561555679835e-06,
253
+ "loss": 0.7516,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.40793201133144474,
258
+ "grad_norm": 1.5892721538246122,
259
+ "learning_rate": 4.982230184254934e-06,
260
+ "loss": 0.7658,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.4192634560906516,
265
+ "grad_norm": 1.493020596244931,
266
+ "learning_rate": 4.978068060059929e-06,
267
+ "loss": 0.7676,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.43059490084985835,
272
+ "grad_norm": 1.502680841198379,
273
+ "learning_rate": 4.9734705143101744e-06,
274
+ "loss": 0.7674,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.44192634560906513,
279
+ "grad_norm": 1.526315536964418,
280
+ "learning_rate": 4.968438354840834e-06,
281
+ "loss": 0.747,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.45325779036827196,
286
+ "grad_norm": 1.771193783955554,
287
+ "learning_rate": 4.962972465853087e-06,
288
+ "loss": 0.8251,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.46458923512747874,
293
+ "grad_norm": 1.4751654383068609,
294
+ "learning_rate": 4.9570738077587635e-06,
295
+ "loss": 0.7587,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.47592067988668557,
300
+ "grad_norm": 1.498540884039298,
301
+ "learning_rate": 4.950743417011591e-06,
302
+ "loss": 0.8311,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.48725212464589235,
307
+ "grad_norm": 1.4059209239064798,
308
+ "learning_rate": 4.9439824059250794e-06,
309
+ "loss": 0.7655,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.4985835694050991,
314
+ "grad_norm": 1.4871399277100446,
315
+ "learning_rate": 4.936791962477076e-06,
316
+ "loss": 0.7358,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.509915014164306,
321
+ "grad_norm": 1.4257000290167645,
322
+ "learning_rate": 4.929173350101025e-06,
323
+ "loss": 0.7163,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.5212464589235127,
328
+ "grad_norm": 1.4659192682033193,
329
+ "learning_rate": 4.921127907463972e-06,
330
+ "loss": 0.7061,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.5325779036827195,
335
+ "grad_norm": 1.484618377703729,
336
+ "learning_rate": 4.912657048231343e-06,
337
+ "loss": 0.7651,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.5439093484419264,
342
+ "grad_norm": 1.4947896835576073,
343
+ "learning_rate": 4.903762260818552e-06,
344
+ "loss": 0.7311,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.5552407932011332,
349
+ "grad_norm": 1.3805335802092924,
350
+ "learning_rate": 4.89444510812947e-06,
351
+ "loss": 0.7327,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.56657223796034,
356
+ "grad_norm": 1.5190953752467466,
357
+ "learning_rate": 4.884707227281807e-06,
358
+ "loss": 0.772,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.5779036827195467,
363
+ "grad_norm": 1.5965731476318468,
364
+ "learning_rate": 4.874550329319457e-06,
365
+ "loss": 0.698,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.5892351274787535,
370
+ "grad_norm": 1.4556721950898377,
371
+ "learning_rate": 4.863976198911845e-06,
372
+ "loss": 0.7267,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.6005665722379604,
377
+ "grad_norm": 1.548206103166572,
378
+ "learning_rate": 4.852986694040347e-06,
379
+ "loss": 0.7188,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.6118980169971672,
384
+ "grad_norm": 1.5029231129419343,
385
+ "learning_rate": 4.84158374567182e-06,
386
+ "loss": 0.7452,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.623229461756374,
391
+ "grad_norm": 1.3962918545527763,
392
+ "learning_rate": 4.829769357419317e-06,
393
+ "loss": 0.7117,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.6345609065155807,
398
+ "grad_norm": 1.3990946918305756,
399
+ "learning_rate": 4.817545605190026e-06,
400
+ "loss": 0.6797,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.6458923512747875,
405
+ "grad_norm": 1.4406458676366833,
406
+ "learning_rate": 4.804914636820517e-06,
407
+ "loss": 0.7229,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.6572237960339944,
412
+ "grad_norm": 1.4774647700554635,
413
+ "learning_rate": 4.791878671699343e-06,
414
+ "loss": 0.7117,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.6685552407932012,
419
+ "grad_norm": 1.5167039884678175,
420
+ "learning_rate": 4.77844000037707e-06,
421
+ "loss": 0.7401,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.6798866855524079,
426
+ "grad_norm": 1.427117682796941,
427
+ "learning_rate": 4.764600984163809e-06,
428
+ "loss": 0.7299,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.6912181303116147,
433
+ "grad_norm": 1.4111273048659723,
434
+ "learning_rate": 4.750364054714302e-06,
435
+ "loss": 0.6947,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.7025495750708215,
440
+ "grad_norm": 1.4031005513050043,
441
+ "learning_rate": 4.735731713600665e-06,
442
+ "loss": 0.7104,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.7138810198300283,
447
+ "grad_norm": 1.3908217678623624,
448
+ "learning_rate": 4.72070653187283e-06,
449
+ "loss": 0.7215,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.7252124645892352,
454
+ "grad_norm": 1.4016377075250317,
455
+ "learning_rate": 4.705291149606787e-06,
456
+ "loss": 0.6801,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.7365439093484419,
461
+ "grad_norm": 1.373368498937934,
462
+ "learning_rate": 4.6894882754406965e-06,
463
+ "loss": 0.7115,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.7478753541076487,
468
+ "grad_norm": 1.3083514867883594,
469
+ "learning_rate": 4.673300686098957e-06,
470
+ "loss": 0.6944,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.7592067988668555,
475
+ "grad_norm": 1.408923716819617,
476
+ "learning_rate": 4.6567312259043e-06,
477
+ "loss": 0.7166,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.7705382436260623,
482
+ "grad_norm": 1.4446149604718292,
483
+ "learning_rate": 4.639782806278021e-06,
484
+ "loss": 0.7643,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.7818696883852692,
489
+ "grad_norm": 1.472987719405972,
490
+ "learning_rate": 4.622458405228411e-06,
491
+ "loss": 0.6748,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.7932011331444759,
496
+ "grad_norm": 1.3910737638781718,
497
+ "learning_rate": 4.604761066827485e-06,
498
+ "loss": 0.6599,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.8045325779036827,
503
+ "grad_norm": 1.4486804488805007,
504
+ "learning_rate": 4.586693900676116e-06,
505
+ "loss": 0.6844,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.8158640226628895,
510
+ "grad_norm": 1.4339732853429255,
511
+ "learning_rate": 4.568260081357644e-06,
512
+ "loss": 0.6934,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.8271954674220963,
517
+ "grad_norm": 1.4071241403434436,
518
+ "learning_rate": 4.549462847880066e-06,
519
+ "loss": 0.7042,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.8385269121813032,
524
+ "grad_norm": 1.381067168557849,
525
+ "learning_rate": 4.5303055031069165e-06,
526
+ "loss": 0.6594,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.8498583569405099,
531
+ "grad_norm": 1.370636257051823,
532
+ "learning_rate": 4.510791413176912e-06,
533
+ "loss": 0.7339,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.8611898016997167,
538
+ "grad_norm": 1.3933507828709049,
539
+ "learning_rate": 4.490924006912497e-06,
540
+ "loss": 0.7319,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.8725212464589235,
545
+ "grad_norm": 1.4434701376432475,
546
+ "learning_rate": 4.470706775217355e-06,
547
+ "loss": 0.7235,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.8838526912181303,
552
+ "grad_norm": 1.3230684123602419,
553
+ "learning_rate": 4.450143270463031e-06,
554
+ "loss": 0.6653,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.8951841359773371,
559
+ "grad_norm": 1.377425868827391,
560
+ "learning_rate": 4.429237105864735e-06,
561
+ "loss": 0.6929,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.9065155807365439,
566
+ "grad_norm": 1.4118910710643473,
567
+ "learning_rate": 4.407991954846471e-06,
568
+ "loss": 0.6713,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.9178470254957507,
573
+ "grad_norm": 1.2911698771129907,
574
+ "learning_rate": 4.386411550395576e-06,
575
+ "loss": 0.6828,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.9291784702549575,
580
+ "grad_norm": 1.3062416329678588,
581
+ "learning_rate": 4.364499684406796e-06,
582
+ "loss": 0.6902,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.9405099150141643,
587
+ "grad_norm": 1.4212108714610014,
588
+ "learning_rate": 4.3422602070160116e-06,
589
+ "loss": 0.7139,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.9518413597733711,
594
+ "grad_norm": 1.4022201237779546,
595
+ "learning_rate": 4.319697025923736e-06,
596
+ "loss": 0.696,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.9631728045325779,
601
+ "grad_norm": 1.4000079484179047,
602
+ "learning_rate": 4.296814105708482e-06,
603
+ "loss": 0.6978,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.9745042492917847,
608
+ "grad_norm": 1.3135869027950182,
609
+ "learning_rate": 4.273615467130156e-06,
610
+ "loss": 0.7094,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.9858356940509915,
615
+ "grad_norm": 1.5103342340296206,
616
+ "learning_rate": 4.250105186423564e-06,
617
+ "loss": 0.6864,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.9971671388101983,
622
+ "grad_norm": 1.5395763391294515,
623
+ "learning_rate": 4.226287394582176e-06,
624
+ "loss": 0.6997,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.0,
629
+ "grad_norm": 1.5395763391294515,
630
+ "learning_rate": 4.202166276632274e-06,
631
+ "loss": 0.7015,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.0113314447592068,
636
+ "grad_norm": 2.9632436977275973,
637
+ "learning_rate": 4.177746070897593e-06,
638
+ "loss": 0.6146,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.0226628895184136,
643
+ "grad_norm": 1.3701820521458077,
644
+ "learning_rate": 4.15303106825461e-06,
645
+ "loss": 0.5952,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.0339943342776203,
650
+ "grad_norm": 1.4232251740156472,
651
+ "learning_rate": 4.128025611378594e-06,
652
+ "loss": 0.6013,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.045325779036827,
657
+ "grad_norm": 1.4243450179098962,
658
+ "learning_rate": 4.10273409398055e-06,
659
+ "loss": 0.5838,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.056657223796034,
664
+ "grad_norm": 1.3024426134525557,
665
+ "learning_rate": 4.077160960035207e-06,
666
+ "loss": 0.5719,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.0679886685552409,
671
+ "grad_norm": 1.346350514168427,
672
+ "learning_rate": 4.051310703000155e-06,
673
+ "loss": 0.5969,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.0793201133144477,
678
+ "grad_norm": 1.370884384362504,
679
+ "learning_rate": 4.025187865026311e-06,
680
+ "loss": 0.6079,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.0906515580736544,
685
+ "grad_norm": 1.462001933003737,
686
+ "learning_rate": 3.998797036159813e-06,
687
+ "loss": 0.6286,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.1019830028328612,
692
+ "grad_norm": 1.332600598608553,
693
+ "learning_rate": 3.972142853535499e-06,
694
+ "loss": 0.606,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.113314447592068,
699
+ "grad_norm": 1.426061501851815,
700
+ "learning_rate": 3.945230000562121e-06,
701
+ "loss": 0.6109,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.1246458923512748,
706
+ "grad_norm": 1.4004325571146066,
707
+ "learning_rate": 3.918063206099421e-06,
708
+ "loss": 0.62,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.1359773371104815,
713
+ "grad_norm": 1.3396518626669338,
714
+ "learning_rate": 3.890647243627218e-06,
715
+ "loss": 0.5934,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.1473087818696883,
720
+ "grad_norm": 1.380208956021839,
721
+ "learning_rate": 3.862986930406669e-06,
722
+ "loss": 0.5968,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.158640226628895,
727
+ "grad_norm": 1.3961154205163853,
728
+ "learning_rate": 3.83508712663382e-06,
729
+ "loss": 0.6032,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.1699716713881019,
734
+ "grad_norm": 1.3448453940648393,
735
+ "learning_rate": 3.8069527345856233e-06,
736
+ "loss": 0.5915,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.1813031161473089,
741
+ "grad_norm": 1.3902990971135147,
742
+ "learning_rate": 3.7785886977585562e-06,
743
+ "loss": 0.5918,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.1926345609065157,
748
+ "grad_norm": 1.3820749771088052,
749
+ "learning_rate": 3.7500000000000005e-06,
750
+ "loss": 0.5969,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.2039660056657224,
755
+ "grad_norm": 1.4716970228552981,
756
+ "learning_rate": 3.7211916646325315e-06,
757
+ "loss": 0.5941,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.2152974504249292,
762
+ "grad_norm": 1.34235642577707,
763
+ "learning_rate": 3.6921687535712657e-06,
764
+ "loss": 0.5803,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 1.226628895184136,
769
+ "grad_norm": 1.360958822094796,
770
+ "learning_rate": 3.662936366434435e-06,
771
+ "loss": 0.5882,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 1.2379603399433428,
776
+ "grad_norm": 1.3865643140417971,
777
+ "learning_rate": 3.6334996396473298e-06,
778
+ "loss": 0.6127,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 1.2492917847025495,
783
+ "grad_norm": 1.3096840589094985,
784
+ "learning_rate": 3.6038637455397802e-06,
785
+ "loss": 0.5703,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 1.2606232294617563,
790
+ "grad_norm": 1.4346753864435622,
791
+ "learning_rate": 3.57403389143732e-06,
792
+ "loss": 0.5997,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 1.271954674220963,
797
+ "grad_norm": 1.4377459031956494,
798
+ "learning_rate": 3.5440153187462146e-06,
799
+ "loss": 0.6251,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 1.28328611898017,
804
+ "grad_norm": 1.4225200803648703,
805
+ "learning_rate": 3.513813302032485e-06,
806
+ "loss": 0.6202,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 1.2946175637393766,
811
+ "grad_norm": 1.3836498692303638,
812
+ "learning_rate": 3.4834331480951213e-06,
813
+ "loss": 0.5944,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 1.3059490084985836,
818
+ "grad_norm": 1.281401506633823,
819
+ "learning_rate": 3.4528801950336177e-06,
820
+ "loss": 0.551,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 1.3172804532577904,
825
+ "grad_norm": 1.4771037032630314,
826
+ "learning_rate": 3.4221598113100196e-06,
827
+ "loss": 0.6072,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.3286118980169972,
832
+ "grad_norm": 1.4652916781647747,
833
+ "learning_rate": 3.391277394805628e-06,
834
+ "loss": 0.6166,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.339943342776204,
839
+ "grad_norm": 1.3590014582336747,
840
+ "learning_rate": 3.3602383718725363e-06,
841
+ "loss": 0.5753,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.3512747875354107,
846
+ "grad_norm": 1.3644484003880029,
847
+ "learning_rate": 3.32904819638017e-06,
848
+ "loss": 0.5892,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.3626062322946175,
853
+ "grad_norm": 1.3191831153419338,
854
+ "learning_rate": 3.2977123487569816e-06,
855
+ "loss": 0.5624,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.3739376770538243,
860
+ "grad_norm": 1.3319312452343077,
861
+ "learning_rate": 3.2662363350274874e-06,
862
+ "loss": 0.5851,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.385269121813031,
867
+ "grad_norm": 1.4257384239422966,
868
+ "learning_rate": 3.234625685844803e-06,
869
+ "loss": 0.5893,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.3966005665722379,
874
+ "grad_norm": 1.3953828272396132,
875
+ "learning_rate": 3.202885955518849e-06,
876
+ "loss": 0.5973,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.4079320113314449,
881
+ "grad_norm": 1.395900408790709,
882
+ "learning_rate": 3.171022721040409e-06,
883
+ "loss": 0.588,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.4192634560906516,
888
+ "grad_norm": 1.4082770595189713,
889
+ "learning_rate": 3.139041581101187e-06,
890
+ "loss": 0.5955,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.4305949008498584,
895
+ "grad_norm": 1.4111017631505742,
896
+ "learning_rate": 3.10694815511007e-06,
897
+ "loss": 0.6304,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.4419263456090652,
902
+ "grad_norm": 1.3684496285444403,
903
+ "learning_rate": 3.0747480822057342e-06,
904
+ "loss": 0.5895,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.453257790368272,
909
+ "grad_norm": 1.3150808865823653,
910
+ "learning_rate": 3.0424470202657953e-06,
911
+ "loss": 0.577,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.4645892351274787,
916
+ "grad_norm": 1.4075517143230738,
917
+ "learning_rate": 3.0100506449126622e-06,
918
+ "loss": 0.5939,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.4759206798866855,
923
+ "grad_norm": 1.3153882543446243,
924
+ "learning_rate": 2.9775646485162697e-06,
925
+ "loss": 0.5735,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.4872521246458923,
930
+ "grad_norm": 1.3348680664842318,
931
+ "learning_rate": 2.9449947391938768e-06,
932
+ "loss": 0.625,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.498583569405099,
937
+ "grad_norm": 1.3489224682673129,
938
+ "learning_rate": 2.9123466398070855e-06,
939
+ "loss": 0.5981,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.509915014164306,
944
+ "grad_norm": 1.3429701772744527,
945
+ "learning_rate": 2.8796260869562865e-06,
946
+ "loss": 0.5887,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.5212464589235126,
951
+ "grad_norm": 1.4722400862474931,
952
+ "learning_rate": 2.8468388299726714e-06,
953
+ "loss": 0.5831,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.5325779036827196,
958
+ "grad_norm": 1.2672960818674879,
959
+ "learning_rate": 2.8139906299080205e-06,
960
+ "loss": 0.5825,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.5439093484419264,
965
+ "grad_norm": 1.3627343997731545,
966
+ "learning_rate": 2.781087258522431e-06,
967
+ "loss": 0.5832,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.5552407932011332,
972
+ "grad_norm": 1.2876772239163903,
973
+ "learning_rate": 2.7481344972701545e-06,
974
+ "loss": 0.5531,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.56657223796034,
979
+ "grad_norm": 1.3472454325008387,
980
+ "learning_rate": 2.7151381362837424e-06,
981
+ "loss": 0.5842,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.5779036827195467,
986
+ "grad_norm": 1.3762098724750873,
987
+ "learning_rate": 2.682103973356659e-06,
988
+ "loss": 0.5712,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.5892351274787535,
993
+ "grad_norm": 1.3492795625450165,
994
+ "learning_rate": 2.64903781292455e-06,
995
+ "loss": 0.5782,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.6005665722379603,
1000
+ "grad_norm": 1.3499587695758297,
1001
+ "learning_rate": 2.615945465045346e-06,
1002
+ "loss": 0.5669,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.6118980169971673,
1007
+ "grad_norm": 1.3511311195079772,
1008
+ "learning_rate": 2.5828327443783775e-06,
1009
+ "loss": 0.551,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.6232294617563738,
1014
+ "grad_norm": 1.33090787217115,
1015
+ "learning_rate": 2.5497054691626754e-06,
1016
+ "loss": 0.579,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.6345609065155808,
1021
+ "grad_norm": 1.3670590438796546,
1022
+ "learning_rate": 2.5165694601946566e-06,
1023
+ "loss": 0.5959,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.6458923512747874,
1028
+ "grad_norm": 1.3299516191015563,
1029
+ "learning_rate": 2.483430539805344e-06,
1030
+ "loss": 0.5979,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.6572237960339944,
1035
+ "grad_norm": 1.4129085459444395,
1036
+ "learning_rate": 2.4502945308373246e-06,
1037
+ "loss": 0.585,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.6685552407932012,
1042
+ "grad_norm": 1.4275247309590513,
1043
+ "learning_rate": 2.4171672556216237e-06,
1044
+ "loss": 0.576,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.679886685552408,
1049
+ "grad_norm": 1.3619200458990444,
1050
+ "learning_rate": 2.3840545349546538e-06,
1051
+ "loss": 0.5841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.6912181303116147,
1056
+ "grad_norm": 1.3819435365787816,
1057
+ "learning_rate": 2.3509621870754505e-06,
1058
+ "loss": 0.5685,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.7025495750708215,
1063
+ "grad_norm": 1.3294738919196907,
1064
+ "learning_rate": 2.317896026643341e-06,
1065
+ "loss": 0.5871,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.7138810198300283,
1070
+ "grad_norm": 1.2730007734790987,
1071
+ "learning_rate": 2.2848618637162584e-06,
1072
+ "loss": 0.5592,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.725212464589235,
1077
+ "grad_norm": 1.3785771168476042,
1078
+ "learning_rate": 2.2518655027298468e-06,
1079
+ "loss": 0.577,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.736543909348442,
1084
+ "grad_norm": 1.3530333929384266,
1085
+ "learning_rate": 2.21891274147757e-06,
1086
+ "loss": 0.5503,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.7478753541076486,
1091
+ "grad_norm": 1.4267187662110872,
1092
+ "learning_rate": 2.1860093700919804e-06,
1093
+ "loss": 0.6071,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.7592067988668556,
1098
+ "grad_norm": 1.3951110903420234,
1099
+ "learning_rate": 2.15316117002733e-06,
1100
+ "loss": 0.5629,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.7705382436260622,
1105
+ "grad_norm": 1.3033237896515593,
1106
+ "learning_rate": 2.1203739130437147e-06,
1107
+ "loss": 0.5452,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.7818696883852692,
1112
+ "grad_norm": 1.380166287245991,
1113
+ "learning_rate": 2.0876533601929153e-06,
1114
+ "loss": 0.5811,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.793201133144476,
1119
+ "grad_norm": 1.2839541967552655,
1120
+ "learning_rate": 2.055005260806125e-06,
1121
+ "loss": 0.5672,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.8045325779036827,
1126
+ "grad_norm": 1.3067862009338267,
1127
+ "learning_rate": 2.0224353514837307e-06,
1128
+ "loss": 0.5683,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.8158640226628895,
1133
+ "grad_norm": 1.3243283509277737,
1134
+ "learning_rate": 1.989949355087339e-06,
1135
+ "loss": 0.5689,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.8271954674220963,
1140
+ "grad_norm": 1.3356790286830134,
1141
+ "learning_rate": 1.957552979734205e-06,
1142
+ "loss": 0.5802,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.8385269121813033,
1147
+ "grad_norm": 1.2892603884545701,
1148
+ "learning_rate": 1.9252519177942666e-06,
1149
+ "loss": 0.5692,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.8498583569405098,
1154
+ "grad_norm": 1.4440754700865919,
1155
+ "learning_rate": 1.8930518448899304e-06,
1156
+ "loss": 0.5965,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.8611898016997168,
1161
+ "grad_norm": 1.387136746836695,
1162
+ "learning_rate": 1.8609584188988135e-06,
1163
+ "loss": 0.5736,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.8725212464589234,
1168
+ "grad_norm": 1.1917095159893407,
1169
+ "learning_rate": 1.8289772789595917e-06,
1170
+ "loss": 0.6144,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.8838526912181304,
1175
+ "grad_norm": 1.375742481693197,
1176
+ "learning_rate": 1.7971140444811514e-06,
1177
+ "loss": 0.5763,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.8951841359773371,
1182
+ "grad_norm": 1.2404940123916632,
1183
+ "learning_rate": 1.7653743141551983e-06,
1184
+ "loss": 0.6063,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.906515580736544,
1189
+ "grad_norm": 1.3989557605487426,
1190
+ "learning_rate": 1.7337636649725132e-06,
1191
+ "loss": 0.5892,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.9178470254957507,
1196
+ "grad_norm": 1.2710248336513368,
1197
+ "learning_rate": 1.7022876512430197e-06,
1198
+ "loss": 0.5813,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.9291784702549575,
1203
+ "grad_norm": 1.2716638071587159,
1204
+ "learning_rate": 1.6709518036198307e-06,
1205
+ "loss": 0.5565,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.9405099150141643,
1210
+ "grad_norm": 1.277667152903096,
1211
+ "learning_rate": 1.6397616281274648e-06,
1212
+ "loss": 0.5727,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.951841359773371,
1217
+ "grad_norm": 1.296382463166991,
1218
+ "learning_rate": 1.6087226051943728e-06,
1219
+ "loss": 0.593,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.963172804532578,
1224
+ "grad_norm": 1.2844540181786357,
1225
+ "learning_rate": 1.5778401886899808e-06,
1226
+ "loss": 0.5841,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.9745042492917846,
1231
+ "grad_norm": 1.3053433701687789,
1232
+ "learning_rate": 1.5471198049663822e-06,
1233
+ "loss": 0.575,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.9858356940509916,
1238
+ "grad_norm": 1.268811845033466,
1239
+ "learning_rate": 1.51656685190488e-06,
1240
+ "loss": 0.588,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.9971671388101981,
1245
+ "grad_norm": 1.247792131322831,
1246
+ "learning_rate": 1.4861866979675155e-06,
1247
+ "loss": 0.5534,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 2.0,
1252
+ "grad_norm": 1.247792131322831,
1253
+ "learning_rate": 1.455984681253787e-06,
1254
+ "loss": 0.5438,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 2.011331444759207,
1259
+ "grad_norm": 2.7694057916801307,
1260
+ "learning_rate": 1.4259661085626802e-06,
1261
+ "loss": 0.5062,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 2.0226628895184136,
1266
+ "grad_norm": 1.2786953899807016,
1267
+ "learning_rate": 1.3961362544602215e-06,
1268
+ "loss": 0.4878,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 2.0339943342776206,
1273
+ "grad_norm": 1.3338942724237564,
1274
+ "learning_rate": 1.3665003603526706e-06,
1275
+ "loss": 0.5131,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 2.045325779036827,
1280
+ "grad_norm": 1.3381680372557467,
1281
+ "learning_rate": 1.3370636335655656e-06,
1282
+ "loss": 0.4976,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 2.056657223796034,
1287
+ "grad_norm": 1.2513390840039769,
1288
+ "learning_rate": 1.3078312464287355e-06,
1289
+ "loss": 0.5211,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 2.0679886685552407,
1294
+ "grad_norm": 1.2770532289534442,
1295
+ "learning_rate": 1.2788083353674694e-06,
1296
+ "loss": 0.5007,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 2.0793201133144477,
1301
+ "grad_norm": 1.2927230496024624,
1302
+ "learning_rate": 1.2500000000000007e-06,
1303
+ "loss": 0.4622,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 2.090651558073654,
1308
+ "grad_norm": 1.2508343832786988,
1309
+ "learning_rate": 1.2214113022414448e-06,
1310
+ "loss": 0.4844,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 2.101983002832861,
1315
+ "grad_norm": 1.207057675657945,
1316
+ "learning_rate": 1.1930472654143777e-06,
1317
+ "loss": 0.4948,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 2.113314447592068,
1322
+ "grad_norm": 1.2515484350526327,
1323
+ "learning_rate": 1.1649128733661802e-06,
1324
+ "loss": 0.4975,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 2.1246458923512748,
1329
+ "grad_norm": 1.2820103087615313,
1330
+ "learning_rate": 1.1370130695933317e-06,
1331
+ "loss": 0.5033,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 2.1359773371104818,
1336
+ "grad_norm": 1.3883649461446737,
1337
+ "learning_rate": 1.1093527563727827e-06,
1338
+ "loss": 0.4959,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 2.1473087818696883,
1343
+ "grad_norm": 1.2985788114536188,
1344
+ "learning_rate": 1.0819367939005802e-06,
1345
+ "loss": 0.5109,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 2.1586402266288953,
1350
+ "grad_norm": 1.3965326476598117,
1351
+ "learning_rate": 1.0547699994378787e-06,
1352
+ "loss": 0.4812,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 2.169971671388102,
1357
+ "grad_norm": 1.3349013266585352,
1358
+ "learning_rate": 1.0278571464645013e-06,
1359
+ "loss": 0.4926,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 2.181303116147309,
1364
+ "grad_norm": 1.3212505511291743,
1365
+ "learning_rate": 1.0012029638401871e-06,
1366
+ "loss": 0.4882,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 2.1926345609065154,
1371
+ "grad_norm": 1.30500171720855,
1372
+ "learning_rate": 9.74812134973689e-07,
1373
+ "loss": 0.5173,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 2.2039660056657224,
1378
+ "grad_norm": 1.2488171277934157,
1379
+ "learning_rate": 9.486892969998465e-07,
1380
+ "loss": 0.482,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 2.215297450424929,
1385
+ "grad_norm": 1.2854653346406788,
1386
+ "learning_rate": 9.228390399647944e-07,
1387
+ "loss": 0.5015,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 2.226628895184136,
1392
+ "grad_norm": 1.323794953427552,
1393
+ "learning_rate": 8.972659060194505e-07,
1394
+ "loss": 0.4735,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 2.237960339943343,
1399
+ "grad_norm": 1.3376265040553337,
1400
+ "learning_rate": 8.719743886214071e-07,
1401
+ "loss": 0.4875,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 2.2492917847025495,
1406
+ "grad_norm": 1.3285002033736215,
1407
+ "learning_rate": 8.469689317453907e-07,
1408
+ "loss": 0.4962,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 2.2606232294617565,
1413
+ "grad_norm": 1.2555976735704084,
1414
+ "learning_rate": 8.222539291024079e-07,
1415
+ "loss": 0.5005,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 2.271954674220963,
1420
+ "grad_norm": 1.2410255920694668,
1421
+ "learning_rate": 7.978337233677269e-07,
1422
+ "loss": 0.4882,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 2.28328611898017,
1427
+ "grad_norm": 1.2713376284380098,
1428
+ "learning_rate": 7.737126054178238e-07,
1429
+ "loss": 0.4739,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 2.2946175637393766,
1434
+ "grad_norm": 1.2772097228177208,
1435
+ "learning_rate": 7.49894813576437e-07,
1436
+ "loss": 0.4652,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 2.3059490084985836,
1441
+ "grad_norm": 1.3985331094997697,
1442
+ "learning_rate": 7.26384532869844e-07,
1443
+ "loss": 0.4983,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 2.31728045325779,
1448
+ "grad_norm": 1.2385757104958386,
1449
+ "learning_rate": 7.031858942915187e-07,
1450
+ "loss": 0.4848,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 2.328611898016997,
1455
+ "grad_norm": 1.298621814561205,
1456
+ "learning_rate": 6.803029740762648e-07,
1457
+ "loss": 0.499,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 2.3399433427762037,
1462
+ "grad_norm": 1.1982592548193622,
1463
+ "learning_rate": 6.577397929839891e-07,
1464
+ "loss": 0.5074,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 2.3512747875354107,
1469
+ "grad_norm": 1.3230369234558008,
1470
+ "learning_rate": 6.355003155932052e-07,
1471
+ "loss": 0.5082,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 2.3626062322946177,
1476
+ "grad_norm": 1.2353352817463088,
1477
+ "learning_rate": 6.135884496044245e-07,
1478
+ "loss": 0.5024,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 2.3739376770538243,
1483
+ "grad_norm": 1.2866413763490911,
1484
+ "learning_rate": 5.920080451535296e-07,
1485
+ "loss": 0.5158,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 2.3852691218130313,
1490
+ "grad_norm": 1.366484849292798,
1491
+ "learning_rate": 5.707628941352655e-07,
1492
+ "loss": 0.5068,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 2.396600566572238,
1497
+ "grad_norm": 1.287762702589202,
1498
+ "learning_rate": 5.4985672953697e-07,
1499
+ "loss": 0.4563,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 2.407932011331445,
1504
+ "grad_norm": 1.2310856033033788,
1505
+ "learning_rate": 5.292932247826449e-07,
1506
+ "loss": 0.5104,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 2.4192634560906514,
1511
+ "grad_norm": 1.2722457695575675,
1512
+ "learning_rate": 5.090759930875039e-07,
1513
+ "loss": 0.4745,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 2.4305949008498584,
1518
+ "grad_norm": 1.1881380406354796,
1519
+ "learning_rate": 4.892085868230881e-07,
1520
+ "loss": 0.4684,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 2.441926345609065,
1525
+ "grad_norm": 1.2279337924506066,
1526
+ "learning_rate": 4.696944968930847e-07,
1527
+ "loss": 0.4766,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 2.453257790368272,
1532
+ "grad_norm": 1.2965879507443776,
1533
+ "learning_rate": 4.505371521199342e-07,
1534
+ "loss": 0.4887,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 2.4645892351274785,
1539
+ "grad_norm": 1.2726278849407309,
1540
+ "learning_rate": 4.317399186423574e-07,
1541
+ "loss": 0.49,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 2.4759206798866855,
1546
+ "grad_norm": 1.2083763664947262,
1547
+ "learning_rate": 4.1330609932388493e-07,
1548
+ "loss": 0.4714,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 2.4872521246458925,
1553
+ "grad_norm": 1.2790819302434515,
1554
+ "learning_rate": 3.9523893317251624e-07,
1555
+ "loss": 0.4924,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 2.498583569405099,
1560
+ "grad_norm": 1.2824144839819291,
1561
+ "learning_rate": 3.7754159477158994e-07,
1562
+ "loss": 0.4969,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 2.509915014164306,
1567
+ "grad_norm": 1.2322829650550764,
1568
+ "learning_rate": 3.602171937219789e-07,
1569
+ "loss": 0.4922,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 2.5212464589235126,
1574
+ "grad_norm": 1.2932932363502108,
1575
+ "learning_rate": 3.4326877409570083e-07,
1576
+ "loss": 0.5135,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 2.5325779036827196,
1581
+ "grad_norm": 1.3265821035298209,
1582
+ "learning_rate": 3.266993139010438e-07,
1583
+ "loss": 0.4824,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 2.543909348441926,
1588
+ "grad_norm": 1.2634627344428153,
1589
+ "learning_rate": 3.1051172455930395e-07,
1590
+ "loss": 0.4756,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 2.555240793201133,
1595
+ "grad_norm": 1.2955666908690064,
1596
+ "learning_rate": 2.947088503932136e-07,
1597
+ "loss": 0.49,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 2.56657223796034,
1602
+ "grad_norm": 1.2966827797243252,
1603
+ "learning_rate": 2.792934681271708e-07,
1604
+ "loss": 0.5022,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 2.5779036827195467,
1609
+ "grad_norm": 1.294488037545825,
1610
+ "learning_rate": 2.642682863993354e-07,
1611
+ "loss": 0.4995,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 2.5892351274787533,
1616
+ "grad_norm": 1.2899319442218364,
1617
+ "learning_rate": 2.4963594528569835e-07,
1618
+ "loss": 0.5022,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 2.6005665722379603,
1623
+ "grad_norm": 1.2411992299049828,
1624
+ "learning_rate": 2.3539901583619186e-07,
1625
+ "loss": 0.4815,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 2.6118980169971673,
1630
+ "grad_norm": 1.290057331367847,
1631
+ "learning_rate": 2.2155999962293035e-07,
1632
+ "loss": 0.4777,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 2.623229461756374,
1637
+ "grad_norm": 1.336160271366626,
1638
+ "learning_rate": 2.081213283006575e-07,
1639
+ "loss": 0.4814,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 2.634560906515581,
1644
+ "grad_norm": 1.2513839029803793,
1645
+ "learning_rate": 1.9508536317948358e-07,
1646
+ "loss": 0.4871,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.6458923512747874,
1651
+ "grad_norm": 1.212015408532025,
1652
+ "learning_rate": 1.824543948099744e-07,
1653
+ "loss": 0.4726,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.6572237960339944,
1658
+ "grad_norm": 1.2427046825799253,
1659
+ "learning_rate": 1.702306425806838e-07,
1660
+ "loss": 0.4807,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.668555240793201,
1665
+ "grad_norm": 1.2778407829783978,
1666
+ "learning_rate": 1.584162543281806e-07,
1667
+ "loss": 0.4957,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.679886685552408,
1672
+ "grad_norm": 1.226886722658913,
1673
+ "learning_rate": 1.4701330595965401e-07,
1674
+ "loss": 0.4898,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.691218130311615,
1679
+ "grad_norm": 1.300360670595622,
1680
+ "learning_rate": 1.3602380108815537e-07,
1681
+ "loss": 0.4841,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.7025495750708215,
1686
+ "grad_norm": 1.313490684903286,
1687
+ "learning_rate": 1.2544967068054332e-07,
1688
+ "loss": 0.4954,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 2.713881019830028,
1693
+ "grad_norm": 1.2920263932419636,
1694
+ "learning_rate": 1.152927727181935e-07,
1695
+ "loss": 0.5249,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 2.725212464589235,
1700
+ "grad_norm": 1.3447396451038305,
1701
+ "learning_rate": 1.0555489187053097e-07,
1702
+ "loss": 0.5207,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 2.736543909348442,
1707
+ "grad_norm": 1.3527682966828949,
1708
+ "learning_rate": 9.623773918144896e-08,
1709
+ "loss": 0.5077,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 2.7478753541076486,
1714
+ "grad_norm": 1.368471140884032,
1715
+ "learning_rate": 8.734295176865748e-08,
1716
+ "loss": 0.5081,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 2.7592067988668556,
1721
+ "grad_norm": 1.278186747537926,
1722
+ "learning_rate": 7.88720925360284e-08,
1723
+ "loss": 0.4944,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 2.770538243626062,
1728
+ "grad_norm": 1.337416906476136,
1729
+ "learning_rate": 7.082664989897486e-08,
1730
+ "loss": 0.4764,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 2.781869688385269,
1735
+ "grad_norm": 1.280766158552745,
1736
+ "learning_rate": 6.320803752292465e-08,
1737
+ "loss": 0.4567,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 2.7932011331444757,
1742
+ "grad_norm": 1.1973951885363563,
1743
+ "learning_rate": 5.601759407492108e-08,
1744
+ "loss": 0.4896,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 2.8045325779036827,
1749
+ "grad_norm": 1.3298617699728477,
1750
+ "learning_rate": 4.9256582988409795e-08,
1751
+ "loss": 0.5015,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 2.8158640226628897,
1756
+ "grad_norm": 1.2840493283766243,
1757
+ "learning_rate": 4.292619224123717e-08,
1758
+ "loss": 0.4702,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 2.8271954674220963,
1763
+ "grad_norm": 1.2753413052551887,
1764
+ "learning_rate": 3.702753414691368e-08,
1765
+ "loss": 0.4677,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 2.8385269121813033,
1770
+ "grad_norm": 1.2669874412423119,
1771
+ "learning_rate": 3.15616451591666e-08,
1772
+ "loss": 0.485,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 2.84985835694051,
1777
+ "grad_norm": 1.2670916015981173,
1778
+ "learning_rate": 2.6529485689825996e-08,
1779
+ "loss": 0.4979,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 2.861189801699717,
1784
+ "grad_norm": 1.3102429493654797,
1785
+ "learning_rate": 2.1931939940071368e-08,
1786
+ "loss": 0.4719,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 2.8725212464589234,
1791
+ "grad_norm": 1.2716849784011235,
1792
+ "learning_rate": 1.7769815745066476e-08,
1793
+ "loss": 0.5018,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 2.8838526912181304,
1798
+ "grad_norm": 1.2711203429937163,
1799
+ "learning_rate": 1.4043844432016507e-08,
1800
+ "loss": 0.5098,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 2.8951841359773374,
1805
+ "grad_norm": 1.3331489651068749,
1806
+ "learning_rate": 1.0754680691665299e-08,
1807
+ "loss": 0.4731,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 2.906515580736544,
1812
+ "grad_norm": 1.3288134823029176,
1813
+ "learning_rate": 7.90290246326042e-09,
1814
+ "loss": 0.5416,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 2.9178470254957505,
1819
+ "grad_norm": 1.2953779393999099,
1820
+ "learning_rate": 5.489010833002739e-09,
1821
+ "loss": 0.4851,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 2.9291784702549575,
1826
+ "grad_norm": 1.3104504966732855,
1827
+ "learning_rate": 3.51342994600129e-09,
1828
+ "loss": 0.5082,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 2.9405099150141645,
1833
+ "grad_norm": 1.2404192298354901,
1834
+ "learning_rate": 1.976506931745392e-09,
1835
+ "loss": 0.4797,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 2.951841359773371,
1840
+ "grad_norm": 1.25894417590066,
1841
+ "learning_rate": 8.78511843112051e-10,
1842
+ "loss": 0.5091,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 2.963172804532578,
1847
+ "grad_norm": 1.3062783600910168,
1848
+ "learning_rate": 2.1963760891391406e-10,
1849
+ "loss": 0.495,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 2.9745042492917846,
1854
+ "grad_norm": 1.2953858272939929,
1855
+ "learning_rate": 0.0,
1856
+ "loss": 0.4696,
1857
+ "step": 264
1858
+ }
1859
+ ],
1860
+ "logging_steps": 1,
1861
+ "max_steps": 264,
1862
+ "num_input_tokens_seen": 0,
1863
+ "num_train_epochs": 3,
1864
+ "save_steps": 500,
1865
+ "stateful_callbacks": {
1866
+ "TrainerControl": {
1867
+ "args": {
1868
+ "should_epoch_stop": false,
1869
+ "should_evaluate": false,
1870
+ "should_log": false,
1871
+ "should_save": true,
1872
+ "should_training_stop": true
1873
+ },
1874
+ "attributes": {}
1875
+ }
1876
+ },
1877
+ "total_flos": 28634663264256.0,
1878
+ "train_batch_size": 1,
1879
+ "trial_name": null,
1880
+ "trial_params": null
1881
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68245ae1dac9231dafee8a98989a5114b045c7c1ab0ee9f3bfd8bd5508a3914a
3
+ size 7608
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)