zainabfatima097 commited on
Commit
263472f
·
verified ·
1 Parent(s): b6d0c9b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - zainabfatima097/My_Dataset
4
+ language:
5
+ - en
6
+ - hi
7
+ library_name: transformers
8
+ ---
9
+ # indictrans2-indic-en-1B Fine-tuned for [Your Task]
10
+
11
+ This model is a fine-tuned version of `ai4bharat/indictrans2-indic-en-1B` specifically trained for [Your Task, e.g., Indic to English translation, Indic text classification, etc.]. It has been fine-tuned on the [Dataset Name] dataset, resulting in improved performance on [Specific Metrics or Aspects, e.g., translation quality, classification accuracy, etc.].
12
+
13
+ ## Table of Contents
14
+
15
+ - [Model Details](#model-details)
16
+ - [Intended Use and Limitations](#intended-use-and-limitations)
17
+ - [Training Data](#training-data)
18
+ - [Evaluation](#evaluation)
19
+ - [How to Use](#how-to-use)
20
+ - [Citation](#citation)
21
+ - [License](#license)
22
+ - [Contact](#contact)
23
+
24
+ ## Model Details
25
+
26
+ - **Model Type:** Sequence-to-Sequence Language Model (Fine-tuned)
27
+ - **Original Model:** `ai4bharat/indictrans2-indic-en-1B`
28
+ - **Fine-tuning Task:** [Your Task, e.g., Indic to English translation, Indic text classification, etc.]
29
+ - **Language(s):** [List languages, e.g., Hindi, Bengali, Tamil, English, etc.]
30
+ - **Training Framework:** Transformers ([Hugging Face](https://huggingface.co/))
31
+ - **PEFT Method:** LoRA (Low-Rank Adaptation)
32
+
33
+ ## Intended Use and Limitations
34
+
35
+ This model is intended for [Describe intended use, e.g., translating Indic languages to English, classifying Indic text sentiment, etc.]. It is best suited for [Specific Domains or Types of Text].
36
+
37
+ **Limitations:**
38
+
39
+ - The model's performance may vary depending on the specific Indic language and the domain of the text.
40
+ - It may not perform well on text that is significantly different from the training data.
41
+ - [Add any other limitations you are aware of, e.g., bias in the data, computational requirements, etc.]
42
+
43
+ ## Training Data
44
+
45
+ The model was fine-tuned on the [Dataset Name] dataset ([Hugging Face Dataset Card URL](If applicable)). This dataset consists of [Describe the data, e.g., parallel text for translation, labeled text for classification, etc.]. The dataset contains approximately [Number] examples for training, [Number] examples for validation, and [Number] examples for testing.
46
+
47
+ ## Evaluation
48
+
49
+ The model was evaluated on the [Dataset Name] test set using the [Evaluation Metrics, e.g., BLEU score for translation, Accuracy/F1-score for classification]. The model achieved the following results:
50
+
51
+ - [Metric 1]: [Value]
52
+ - [Metric 2]: [Value]
53
+ - [Add more metrics as needed]
54
+
55
+ ## How to Use
56
+
57
+ ```python
58
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
59
+ import torch
60
+
61
+ model_path = "[Your Model Path or Hub Name]" # Replace with your model path or Hugging Face Hub name
62
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
63
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
64
+
65
+ # Example Usage (Adapt to your specific task)
66
+ inputs = tokenizer("[Your Input Text]", return_tensors="pt")
67
+ outputs = model.generate(**inputs)
68
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
69
+ print(generated_text)