File size: 10,026 Bytes
efb49f5
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e2317
53af936
efb49f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e2317
efb49f5
 
 
 
 
 
 
 
 
 
 
 
a4e2317
efb49f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e2317
efb49f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e2317
 
 
 
 
 
 
 
53af936
a4e2317
53af936
 
 
a4e2317
7145e42
 
a4e2317
7145e42
 
a4e2317
efb49f5
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e2317
efb49f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
---
license: apache-2.0
library_name: diffusers
pipeline_tag: text-to-image
tags:
  - flux
  - lora
  - text-to-image
  - image-generation
  - adapter
  - flux-dev
  - low-rank-adaptation
---

<!-- README Version: v1.4 -->

# FLUX.1-dev LoRA Collection

A curated collection of Low-Rank Adaptation (LoRA) models for FLUX.1-dev, enabling lightweight fine-tuning and style adaptation for text-to-image generation.

## Model Description

This repository serves as an organized storage for FLUX.1-dev LoRA adapters. LoRAs are lightweight model adaptations that modify the behavior of the base FLUX.1-dev model without requiring full model retraining. They enable:

- **Style Transfer**: Apply artistic styles and aesthetic transformations
- **Concept Learning**: Teach the model specific subjects, characters, or objects
- **Quality Enhancement**: Improve specific aspects like detail, lighting, or composition
- **Domain Adaptation**: Specialize the model for specific use cases (e.g., architecture, portraits, landscapes)

LoRAs are significantly smaller than full models (typically 10-500MB vs 20GB+), making them efficient for storage, sharing, and experimentation.

## Repository Contents

```
flux-dev-loras/
β”œβ”€β”€ README.md (10.7KB)
└── loras/
    └── flux/
        └── (LoRA .safetensors files will be stored here)
```

**Current Status**: Repository structure initialized, ready for LoRA model storage.

**Typical LoRA File Sizes**:
- Small LoRAs (rank 4-16): 10-50 MB
- Medium LoRAs (rank 32-64): 50-200 MB
- Large LoRAs (rank 128+): 200-500 MB

**Total Repository Size**: ~14 KB (structure initialized, ready for LoRA population)

## Hardware Requirements

LoRA models add minimal overhead to base FLUX.1-dev requirements:

### Minimum Requirements
- **VRAM**: 12GB (base FLUX.1-dev requirement)
- **RAM**: 16GB system memory
- **Disk Space**: Variable depending on LoRA collection size
  - Base model: ~24GB (FP16) or ~12GB (FP8)
  - Per LoRA: 10-500MB typically
- **GPU**: NVIDIA RTX 3060 (12GB) or better

### Recommended Requirements
- **VRAM**: 24GB (RTX 4090, RTX A5000)
- **RAM**: 32GB system memory
- **Disk Space**: 50-100GB for extensive LoRA collection
- **GPU**: NVIDIA RTX 4090 or RTX 5090 for fastest inference

### Performance Notes
- LoRAs add minimal computational overhead (<5% typically)
- Multiple LoRAs can be stacked (with performance trade-offs)
- FP8 base models are compatible with FP16 LoRAs

## Usage Examples

### Basic LoRA Loading with Diffusers

```python
from diffusers import FluxPipeline
import torch

# Load base FLUX.1-dev model
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16
).to("cuda")

# Load LoRA adapter (example path - adjust to your actual LoRA file)
pipe.load_lora_weights("E:/huggingface/flux-dev-loras/loras/flux/your-lora-name.safetensors")

# Generate image with LoRA applied
prompt = "a beautiful landscape in the style of the LoRA"
image = pipe(
    prompt=prompt,
    num_inference_steps=50,
    guidance_scale=7.5,
    height=1024,
    width=1024
).images[0]

image.save("output.png")
```

### Multiple LoRA Stacking

```python
from diffusers import FluxPipeline
import torch

pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16
).to("cuda")

# Load multiple LoRAs with different strengths
pipe.load_lora_weights(
    "E:/huggingface/flux-dev-loras/loras/flux/style-lora.safetensors",
    adapter_name="style"
)
pipe.load_lora_weights(
    "E:/huggingface/flux-dev-loras/loras/flux/detail-lora.safetensors",
    adapter_name="detail"
)

# Set adapter weights
pipe.set_adapters(["style", "detail"], adapter_weights=[0.8, 0.5])

# Generate with combined LoRA effects
image = pipe(
    prompt="a detailed portrait with artistic style",
    num_inference_steps=50
).images[0]

image.save("combined_output.png")
```

### Dynamic LoRA Weight Adjustment

```python
from diffusers import FluxPipeline
import torch

pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16
).to("cuda")

pipe.load_lora_weights(
    "E:/huggingface/flux-dev-loras/loras/flux/artistic-style.safetensors"
)

# Generate with different LoRA strengths
for strength in [0.3, 0.6, 1.0]:
    pipe.fuse_lora(lora_scale=strength)

    image = pipe(
        prompt="a mountain landscape",
        num_inference_steps=50
    ).images[0]

    image.save(f"output_strength_{strength}.png")

    # Unfuse before changing strength
    pipe.unfuse_lora()
```

### ComfyUI Integration

LoRAs in this directory can be used directly in ComfyUI:

1. **Automatic Detection**: Place LoRAs in ComfyUI's `models/loras/` directory, or create a symlink:
   ```bash
   mklink /D "ComfyUI\models\loras\flux-dev-loras" "E:\huggingface\flux-dev-loras\loras\flux"
   ```

2. **Load in Workflow**: Use the "Load LoRA" node with FLUX.1-dev checkpoint
3. **Adjust Strength**: Use the strength parameter (0.0-1.0) to control LoRA influence

## Model Specifications

### Base Model Compatibility
- **Model**: FLUX.1-dev by Black Forest Labs
- **Architecture**: Latent diffusion transformer
- **Compatible Precisions**: FP16, BF16, FP8 (E4M3)

### LoRA Format
- **Format**: SafeTensors (.safetensors)
- **Typical Ranks**: 4, 8, 16, 32, 64, 128
- **Training Method**: Low-Rank Adaptation (LoRA)

### Supported Libraries
- diffusers (β‰₯0.30.0 recommended)
- ComfyUI
- InvokeAI
- Automatic1111 (with FLUX support)

## Finding and Adding LoRAs

### Recommended Sources
- **Hugging Face Hub**: https://huggingface.co/models?pipeline_tag=text-to-image&other=flux&other=lora
- **CivitAI**: https://civitai.com/ (filter for FLUX.1-dev LoRAs)
- **Replicate**: Community-trained FLUX LoRAs

### Download Process
```bash
# Example: Download LoRA from Hugging Face
cd E:\huggingface\flux-dev-loras\loras\flux
huggingface-cli download username/lora-repo --local-dir .
```

### Organization Tips
- Use descriptive filenames: `style-artistic-painting.safetensors`
- Group by category: `style/`, `character/`, `concept/`, `quality/`
- Include metadata files (`.json`) with training details when available

## Performance Tips and Optimization

### Memory Optimization
- **Use FP8 Base Model**: Load FLUX.1-dev in FP8 to save ~12GB VRAM
- **Sequential Loading**: Load/unload LoRAs as needed instead of keeping all loaded
- **CPU Offload**: Use `enable_model_cpu_offload()` for VRAM-constrained systems

```python
pipe.enable_model_cpu_offload()
```

### Quality Optimization
- **LoRA Strength Tuning**: Start with 0.7-0.8 strength, adjust based on results
- **Inference Steps**: LoRAs work well with 30-50 steps (same as base model)
- **Guidance Scale**: Use 7.0-8.0 for balanced results with LoRAs

### Training Your Own LoRAs
- **Recommended Tools**: Kohya_ss, SimpleTuner, ai-toolkit
- **Dataset Size**: 10-50 high-quality images for concept learning
- **Rank Selection**: Rank 16-32 for most use cases, higher for complex styles
- **Training Steps**: 1000-5000 depending on complexity and dataset size

## License

**LoRA Models**: Individual LoRAs may have different licenses. Check each LoRA's source repository for specific licensing terms.

**Base Model License**: FLUX.1-dev uses the Black Forest Labs FLUX.1-dev Community License
- Commercial use allowed with restrictions
- See: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md

**Repository Structure**: Apache 2.0 (this organizational structure)

## Citation

If you use FLUX.1-dev LoRAs in your work, please cite the base model:

```bibtex
@software{flux1_dev,
  author = {Black Forest Labs},
  title = {FLUX.1-dev},
  year = {2024},
  url = {https://huggingface.co/black-forest-labs/FLUX.1-dev}
}
```

For specific LoRAs, cite the original creators from their respective repositories.

## Resources and Links

### Official FLUX Resources
- Base Model: https://huggingface.co/black-forest-labs/FLUX.1-dev
- Black Forest Labs: https://blackforestlabs.ai/
- FLUX Documentation: https://github.com/black-forest-labs/flux

### LoRA Training Resources
- Kohya_ss Trainer: https://github.com/bmaltais/kohya_ss
- SimpleTuner: https://github.com/bghira/SimpleTuner
- ai-toolkit: https://github.com/ostris/ai-toolkit

### Community and Support
- Hugging Face Diffusers Docs: https://huggingface.co/docs/diffusers
- FLUX Discord Communities
- r/StableDiffusion (Reddit)

### Model Discovery
- Hugging Face FLUX LoRAs: https://huggingface.co/models?other=flux&other=lora
- CivitAI FLUX Section: https://civitai.com/models?modelType=LORA&baseModel=FLUX.1%20D

## Changelog

### v1.4 (2025-10-28)
- Updated hardware recommendations with RTX 5090 reference
- Refreshed repository size information (14 KB)
- Updated last modified date to current (2025-10-28)
- Verified all YAML frontmatter compliance with HuggingFace standards
- Confirmed repository structure and organization remain current

### v1.3 (2024-10-14)
- **CRITICAL FIX**: Moved version header AFTER YAML frontmatter (HuggingFace requirement)
- Verified YAML frontmatter is first content in file
- Confirmed proper YAML structure with three-dash delimiters
- All metadata fields validated against HuggingFace standards

### v1.2 (2024-10-14)
- Updated version metadata to v1.2
- Verified repository structure and file organization
- Updated repository size information
- Confirmed YAML frontmatter compliance with HuggingFace standards

### v1.1 (2024-10-13)
- Updated version metadata to v1.1
- Enhanced tag metadata with `low-rank-adaptation`
- Improved hardware requirements formatting with subsections
- Added changelog section for version tracking

### v1.0 (Initial Release)
- Initial repository structure and documentation
- Comprehensive usage examples for diffusers and ComfyUI
- Performance optimization guidelines
- LoRA training and discovery resources

---

**Repository Status**: Initialized and ready for LoRA collection
**Last Updated**: 2025-10-28
**Maintained By**: Local collection for FLUX.1-dev experimentation