add README
Browse files
README.md
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
datasets:
|
| 4 |
+
- librispeech
|
| 5 |
+
tags:
|
| 6 |
+
- audio
|
| 7 |
+
- automatic-speech-recognition
|
| 8 |
+
- speech
|
| 9 |
+
- asr
|
| 10 |
+
- hubert
|
| 11 |
+
license: apache-2.0
|
| 12 |
+
metrics:
|
| 13 |
+
- wer
|
| 14 |
+
- cer
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# voidful/asr_hubert_cluster_bart_base
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## Usage
|
| 21 |
+
download file
|
| 22 |
+
```shell
|
| 23 |
+
wget https://raw.githubusercontent.com/voidful/hubert-cluster-code/main/km_feat_100_layer_20
|
| 24 |
+
wget https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
Hubert kmeans code
|
| 28 |
+
```python
|
| 29 |
+
import joblib
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import Wav2Vec2FeatureExtractor, HubertModel
|
| 32 |
+
import soundfile as sf
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class HubertCode(object):
|
| 36 |
+
def __init__(self, hubert_model, km_path, km_layer):
|
| 37 |
+
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model)
|
| 38 |
+
self.model = HubertModel.from_pretrained(hubert_model)
|
| 39 |
+
self.km_model = joblib.load(km_path)
|
| 40 |
+
self.km_layer = km_layer
|
| 41 |
+
self.C_np = self.km_model.cluster_centers_.transpose()
|
| 42 |
+
self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True)
|
| 43 |
+
|
| 44 |
+
self.C = torch.from_numpy(self.C_np)
|
| 45 |
+
self.Cnorm = torch.from_numpy(self.Cnorm_np)
|
| 46 |
+
if torch.cuda.is_available():
|
| 47 |
+
self.C = self.C.cuda()
|
| 48 |
+
self.Cnorm = self.Cnorm.cuda()
|
| 49 |
+
self.model = self.model.cuda()
|
| 50 |
+
|
| 51 |
+
def __call__(self, filepath, sampling_rate=None):
|
| 52 |
+
speech, sr = sf.read(filepath)
|
| 53 |
+
input_values = self.processor(speech, return_tensors="pt", sampling_rate=sr).input_values
|
| 54 |
+
if torch.cuda.is_available():
|
| 55 |
+
input_values = input_values.cuda()
|
| 56 |
+
hidden_states = self.model(input_values, output_hidden_states=True).hidden_states
|
| 57 |
+
x = hidden_states[self.km_layer].squeeze()
|
| 58 |
+
dist = (
|
| 59 |
+
x.pow(2).sum(1, keepdim=True)
|
| 60 |
+
- 2 * torch.matmul(x, self.C)
|
| 61 |
+
+ self.Cnorm
|
| 62 |
+
)
|
| 63 |
+
return dist.argmin(dim=1).cpu().numpy()
|
| 64 |
+
```
|
| 65 |
+
input
|
| 66 |
+
```python
|
| 67 |
+
hc = HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
|
| 68 |
+
voice_ids = hc('./sample1.flac')
|
| 69 |
+
```
|
| 70 |
+
bart model
|
| 71 |
+
````python
|
| 72 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 73 |
+
tokenizer = AutoTokenizer.from_pretrained("voidful/asr_hubert_cluster_bart_base")
|
| 74 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("voidful/asr_hubert_cluster_bart_base")
|
| 75 |
+
````
|
| 76 |
+
generate output
|
| 77 |
+
```python
|
| 78 |
+
gen_output = model.generate(input_ids=tokenizer("".join([f":vtok{i}:" for i in voice_ids]),return_tensors='pt').input_ids,max_length=1024)
|
| 79 |
+
print(tokenizer.decode(gen_output[0], skip_special_tokens=True))
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
## Result
|
| 83 |
+
`going along slushy country roads and speaking to damp audience in drifty school rooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to ask immediately afterwards`
|