#!/usr/bin/env python3 """ MODULE 51 v2.0: ENHANCED AUTONOMOUS KNOWLEDGE INTEGRATION FRAMEWORK Recursive, self-learning AI for cross-domain historical pattern detection """ import numpy as np from dataclasses import dataclass, field from datetime import datetime from typing import Dict, Any, List, Callable import hashlib import secrets import asyncio import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ------------------------------- # Epistemic Vectors # ------------------------------- @dataclass class EpistemicVector: content_hash: str dimensional_components: Dict[str, float] confidence_metrics: Dict[str, float] temporal_coordinates: Dict[str, Any] relational_entanglements: List[str] meta_cognition: Dict[str, Any] security_signature: str epistemic_coherence: float = field(init=False) def __post_init__(self): dimensional_strength = np.mean(list(self.dimensional_components.values())) confidence_strength = np.mean(list(self.confidence_metrics.values())) relational_density = min(1.0, len(self.relational_entanglements) / 10.0) self.epistemic_coherence = min( 1.0, (dimensional_strength * 0.4 + confidence_strength * 0.3 + relational_density * 0.3) ) # ------------------------------- # Quantum-style security # ------------------------------- class QuantumSecurityContext: def __init__(self): self.key = secrets.token_bytes(32) self.temporal_signature = hashlib.sha3_512(datetime.now().isoformat().encode()).hexdigest() def generate_quantum_hash(self, data: Any) -> str: data_str = str(data) combined = f"{data_str}{self.temporal_signature}{secrets.token_hex(8)}" return hashlib.sha3_512(combined.encode()).hexdigest() # ------------------------------- # Autonomous Knowledge Integration # ------------------------------- class AutonomousKnowledgeActivation: def __init__(self): self.security_context = QuantumSecurityContext() self.knowledge_domains = self._initialize_knowledge_domains() self.integration_triggers = self._set_integration_triggers() self.epistemic_vectors: Dict[str, EpistemicVector] = {} self.recursive_depth = 0 self.max_recursive_depth = 10 def _initialize_knowledge_domains(self): return { 'archaeological': {'scope': 'global_site_databases, dating_methodologies, cultural_sequences'}, 'geological': {'scope': 'catastrophe_records, climate_proxies, impact_evidence'}, 'mythological': {'scope': 'cross_cultural_narratives, thematic_archetypes, transmission_pathways'}, 'astronomical': {'scope': 'orbital_mechanics, impact_probabilities, cosmic_cycles'}, 'genetic': {'scope': 'population_bottlenecks, migration_patterns, evolutionary_pressure'} } def _set_integration_triggers(self): return {domain: "pattern_detection_trigger" for domain in self.knowledge_domains} async def activate_autonomous_research(self, initial_data=None): self.recursive_depth += 1 results = {} for domain in self.knowledge_domains: results[domain] = await self._process_domain(domain) integrated_vector = self._integrate_vectors(results) self.recursive_depth -= 1 return { 'autonomous_research_activated': True, 'knowledge_domains_deployed': len(self.knowledge_domains), 'epistemic_vectors': self.epistemic_vectors, 'integrated_vector': integrated_vector } async def _process_domain(self, domain): # Simulated recursive pattern detection & correlation data_snapshot = { 'domain': domain, 'timestamp': datetime.now().isoformat(), 'simulated_pattern_score': np.random.rand() } vector = EpistemicVector( content_hash=self.security_context.generate_quantum_hash(data_snapshot), dimensional_components={'pattern_density': np.random.rand(), 'temporal_alignment': np.random.rand()}, confidence_metrics={'domain_confidence': np.random.rand()}, temporal_coordinates={'processed_at': datetime.now().isoformat()}, relational_entanglements=list(self.knowledge_domains.keys()), meta_cognition={'recursive_depth': self.recursive_depth}, security_signature=self.security_context.generate_quantum_hash(data_snapshot) ) self.epistemic_vectors[vector.content_hash] = vector # Recursive deepening if under max depth if self.recursive_depth < self.max_recursive_depth and np.random.rand() > 0.7: await self.activate_autonomous_research(initial_data=data_snapshot) return vector def _integrate_vectors(self, domain_vectors: Dict[str, EpistemicVector]) -> EpistemicVector: # Combine dimensional components & confidence metrics dimensional_components = {k: np.mean([v.dimensional_components.get(k, 0.5) for v in domain_vectors.values()]) for k in ['pattern_density', 'temporal_alignment']} confidence_metrics = {k: np.mean([v.confidence_metrics.get(k, 0.5) for v in domain_vectors.values()]) for k in ['domain_confidence']} integrated_vector = EpistemicVector( content_hash=self.security_context.generate_quantum_hash(domain_vectors), dimensional_components=dimensional_components, confidence_metrics=confidence_metrics, temporal_coordinates={'integration_time': datetime.now().isoformat()}, relational_entanglements=list(domain_vectors.keys()), meta_cognition={'integration_depth': self.recursive_depth}, security_signature=self.security_context.generate_quantum_hash(domain_vectors) ) return integrated_vector # ------------------------------- # Self-Directed Learning Protocol # ------------------------------- class SelfDirectedLearningProtocol: def __init__(self, framework: AutonomousKnowledgeActivation): self.framework = framework async def execute_autonomous_learning_cycle(self): return await self.framework.activate_autonomous_research() # ------------------------------- # DEMONSTRATION # ------------------------------- async def demonstrate_autonomous_framework(): framework = AutonomousKnowledgeActivation() results = await framework.activate_autonomous_research() print("MODULE 51 v2.0: ENHANCED AUTONOMOUS KNOWLEDGE INTEGRATION") print(f"Autonomous Research Activated: {results['autonomous_research_activated']}") print(f"Knowledge Domains Deployed: {results['knowledge_domains_deployed']}") print(f"Epistemic Vectors Created: {len(results['epistemic_vectors'])}") print(f"Integrated Vector Coherence: {results['integrated_vector'].epistemic_coherence:.3f}") if __name__ == "__main__": asyncio.run(demonstrate_autonomous_framework())