#!/usr/bin/env python3 """ AGI FRAME 1.1 - PRODUCTION FRAMEWORK Component-Based AGI System with Quantum Verification """ import numpy as np import torch import asyncio from dataclasses import dataclass, field from typing import Dict, List, Any, Optional, Tuple from datetime import datetime from enum import Enum import networkx as nx import hashlib import json import time import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ============================================================================= # CORE COMPONENT INTERFACES # ============================================================================= class ComponentType(Enum): QUANTUM_TRUTH = "quantum_truth" BAYESIAN_CONSCIOUSNESS = "bayesian_consciousness" SCIENTIFIC_VALIDATION = "scientific_validation" APEX_VERIFICATION = "apex_verification" KNOWLEDGE_INTEGRITY = "knowledge_integrity" @dataclass class ComponentInterface: input_schema: Dict[str, str] output_schema: Dict[str, str] methods: List[str] error_handling: Dict[str, str] = field(default_factory=dict) @dataclass class SystemComponent: component_type: ComponentType interface: ComponentInterface dependencies: List[ComponentType] implementation: Any # ============================================================================= # QUANTUM TRUTH COMPONENT # ============================================================================= class QuantumTruthComponent: def __init__(self): self.certainty_threshold = 0.85 self.entropy_pool = self._init_entropy() def _init_entropy(self) -> bytes: """Initialize quantum entropy pool""" sources = [ str(time.perf_counter_ns()).encode(), str(hash(time.time())).encode(), ] return hashlib.sha256(b''.join(sources)).digest() def analyze_claim(self, claim_data: Dict, evidence: List[Dict]) -> Dict: evidence_strength = self._calculate_evidence_strength(evidence) mathematical_certainty = self._compute_mathematical_certainty(claim_data) historical_coherence = self._assess_historical_coherence(claim_data) binding_strength = ( 0.4 * mathematical_certainty + 0.35 * evidence_strength + 0.25 * historical_coherence ) quantum_seal = self._generate_quantum_seal(claim_data, evidence) return { "binding_strength": float(binding_strength), "mathematical_certainty": float(mathematical_certainty), "evidence_integration": float(evidence_strength), "temporal_coherence": float(historical_coherence), "quantum_seal": quantum_seal, "escape_prevention": binding_strength > self.certainty_threshold } def _calculate_evidence_strength(self, evidence: List[Dict]) -> float: if not evidence: return 0.0 strengths = [e.get('strength', 0.5) for e in evidence] return float(np.mean(strengths)) def _compute_mathematical_certainty(self, claim_data: Dict) -> float: complexity = len(str(claim_data).split()) / 100 logical_consistency = claim_data.get('logical_consistency', 0.7) empirical_support = claim_data.get('empirical_support', 0.6) base_certainty = (logical_consistency + empirical_support) / 2 complexity_penalty = min(0.2, complexity * 0.1) return max(0.0, min(0.95, base_certainty - complexity_penalty)) def _assess_historical_coherence(self, claim_data: Dict) -> float: historical_precedents = claim_data.get('historical_precedents', []) if not historical_precedents: return 0.3 precedent_strength = len(historical_precedents) / 10 return min(0.9, 0.5 + precedent_strength * 0.4) def _generate_quantum_seal(self, claim_data: Dict, evidence: List[Dict]) -> Dict: """Generate quantum-resistant verification seal""" data_str = json.dumps(claim_data, sort_keys=True) evidence_hash = hashlib.sha256(str(evidence).encode()).hexdigest() quantum_hash = hashlib.sha3_512( data_str.encode() + evidence_hash.encode() + self.entropy_pool ).hexdigest() return { "quantum_hash": quantum_hash[:64], "temporal_anchor": time.time_ns(), "entropy_binding": hashlib.blake2b(self.entropy_pool).hexdigest()[:32] } # ============================================================================= # BAYESIAN CONSCIOUSNESS COMPONENT # ============================================================================= class BayesianConsciousnessComponent: def __init__(self): self.model = self._build_model() self.information_cache = {} def _build_model(self): """Build neural consciousness model""" return { 'layers': 5, 'neurons': 128, 'activation': 'quantum_relu' } def analyze_consciousness(self, neural_data: np.ndarray) -> Dict: processed_data = self._preprocess_data(neural_data) information_integration = self._calculate_information_integration(neural_data) pattern_complexity = self._calculate_pattern_complexity(neural_data) temporal_coherence = self._calculate_temporal_coherence(neural_data) consciousness_composite = ( 0.4 * self._neural_activation(processed_data) + 0.3 * information_integration + 0.3 * pattern_complexity ) return { "consciousness_composite": float(consciousness_composite), "information_integration": float(information_integration), "pattern_complexity": float(pattern_complexity), "temporal_coherence": float(temporal_coherence), "neural_entropy": float(self._calculate_neural_entropy(neural_data)) } def _preprocess_data(self, data: np.ndarray) -> np.ndarray: if data.ndim == 1: data = data.reshape(1, -1) if data.ndim == 2: n_samples, n_features = data.shape side_length = int(np.ceil(np.sqrt(n_features))) padded_data = np.zeros((n_samples, side_length, side_length, 1)) for i in range(n_samples): flat_data = data[i] if len(flat_data) > side_length * side_length: flat_data = flat_data[:side_length * side_length] padded_data[i, :, :, 0].flat[:len(flat_data)] = flat_data data = padded_data data_min = np.min(data) data_max = np.max(data) if data_max > data_min: data = (data - data_min) / (data_max - data_min) return data def _neural_activation(self, data: np.ndarray) -> float: """Simulate neural network activation""" if data.size == 0: return 0.5 return float(np.mean(np.tanh(data))) def _calculate_information_integration(self, data: np.ndarray) -> float: if data.ndim == 1: return 0.5 cov_matrix = np.cov(data.T) eigenvals = np.linalg.eigvals(cov_matrix) integration = np.sum(eigenvals) / (np.max(eigenvals) + 1e-8) return float(integration / data.shape[1]) def _calculate_pattern_complexity(self, data: np.ndarray) -> float: if data.ndim == 1: spectrum = np.fft.fft(data) complexity = np.std(np.abs(spectrum)) / (np.mean(np.abs(spectrum)) + 1e-8) else: singular_vals = np.linalg.svd(data, compute_uv=False) complexity = np.std(singular_vals) / (np.mean(singular_vals) + 1e-8) return float(min(1.0, complexity)) def _calculate_temporal_coherence(self, data: np.ndarray) -> float: if data.ndim == 1: autocorr = np.correlate(data, data, mode='full') autocorr = autocorr[len(autocorr)//2:] coherence = autocorr[1] / (autocorr[0] + 1e-8) if len(autocorr) > 1 else 0.5 else: coherences = [] for i in range(data.shape[1]): autocorr = np.correlate(data[:, i], data[:, i], mode='full') autocorr = autocorr[len(autocorr)//2:] coh = autocorr[1] / (autocorr[0] + 1e-8) if len(autocorr) > 1 else 0.5 coherences.append(coh) coherence = np.mean(coherences) return float(abs(coherence)) def _calculate_neural_entropy(self, data: np.ndarray) -> float: """Calculate neural entropy for consciousness measurement""" if data.size == 0: return 0.0 histogram = np.histogram(data, bins=20)[0] probabilities = histogram / np.sum(histogram) entropy = -np.sum(probabilities * np.log(probabilities + 1e-8)) return float(entropy / np.log(len(probabilities))) # ============================================================================= # SCIENTIFIC VALIDATION COMPONENT # ============================================================================= class ScientificValidationComponent: def __init__(self): self.validation_methods = { 'statistical_analysis': self._perform_statistical_analysis, 'reproducibility_analysis': self._perform_reproducibility_analysis, 'peer_validation': self._perform_peer_validation } def validate_claim(self, claim_data: Dict, evidence: List[Dict]) -> Dict: validation_results = {} for method_name, method_func in self.validation_methods.items(): try: validation_results[method_name] = method_func(claim_data, evidence) except Exception as e: validation_results[method_name] = {'error': str(e), 'valid': False} overall_validity = self._compute_overall_validity(validation_results) return { "overall_validity": overall_validity, "validation_methods": validation_results, "confidence_level": self._calculate_confidence_level(overall_validity), "scientific_grade": self._assign_scientific_grade(overall_validity) } def _perform_statistical_analysis(self, claim_data: Dict, evidence: List[Dict]) -> Dict: if not evidence: return {'valid': False, 'reason': 'insufficient_evidence'} evidence_strengths = [e.get('strength', 0.5) for e in evidence] mean_strength = np.mean(evidence_strengths) std_strength = np.std(evidence_strengths) return { 'valid': mean_strength > 0.6 and std_strength < 0.3, 'mean_strength': float(mean_strength), 'variance': float(std_strength), 'sample_size': len(evidence) } def _perform_reproducibility_analysis(self, evidence: List[Dict]) -> Dict: if len(evidence) < 2: return {'valid': False, 'reason': 'insufficient_replication_data'} reproducibility_scores = [] for e in evidence: replication_count = e.get('replication_count', 0) reproducibility = min(1.0, replication_count / 3) reproducibility_scores.append(reproducibility) avg_reproducibility = np.mean(reproducibility_scores) return { 'valid': avg_reproducibility > 0.6, 'reproducibility_score': float(avg_reproducibility), 'studies_considered': len(evidence) } def _perform_peer_validation(self, claim_data: Dict, evidence: List[Dict]) -> Dict: source_quality = claim_data.get('source_quality', 0.5) citation_count = claim_data.get('citation_count', 0) peer_score = (source_quality * 0.6 + min(1.0, citation_count / 100) * 0.4) return { 'valid': peer_score > 0.5, 'peer_score': float(peer_score), 'source_quality': float(source_quality), 'citation_impact': min(1.0, citation_count / 100) } def _compute_overall_validity(self, validation_results: Dict) -> float: valid_methods = [result for result in validation_results.values() if isinstance(result, dict) and result.get('valid', False)] if not valid_methods: return 0.0 return min(0.95, len(valid_methods) / len(validation_results)) def _calculate_confidence_level(self, validity: float) -> str: if validity > 0.9: return "high" elif validity > 0.7: return "medium" elif validity > 0.5: return "low" else: return "very_low" def _assign_scientific_grade(self, validity: float) -> str: if validity > 0.9: return "A - Robust Scientific Consensus" elif validity > 0.7: return "B - Strong Evidence" elif validity > 0.5: return "C - Moderate Support" else: return "D - Limited Evidence" # ============================================================================= # APEX VERIFICATION COMPONENT # ============================================================================= class ApexVerificationComponent: def __init__(self): self.verification_cache = {} self.integrity_threshold = 0.8 def perform_apex_verification(self, claim_data: Dict, truth_results: Dict, consciousness_results: Dict, science_results: Dict) -> Dict: """Perform comprehensive apex-level verification""" integrity_score = self._calculate_integrity_score( truth_results, consciousness_results, science_results ) coherence_analysis = self._analyze_multi_dimensional_coherence( truth_results, consciousness_results, science_results ) verification_seal = self._generate_verification_seal( claim_data, integrity_score, coherence_analysis ) return { "apex_integrity_score": float(integrity_score), "multi_dimensional_coherence": coherence_analysis, "verification_seal": verification_seal, "apex_certified": integrity_score > self.integrity_threshold, "verification_timestamp": datetime.utcnow().isoformat(), "composite_confidence": self._calculate_composite_confidence( truth_results, consciousness_results, science_results ) } def _calculate_integrity_score(self, truth: Dict, consciousness: Dict, science: Dict) -> float: """Calculate comprehensive integrity score across all dimensions""" truth_strength = truth.get('binding_strength', 0.5) consciousness_level = consciousness.get('consciousness_composite', 0.5) scientific_validity = science.get('overall_validity', 0.5) integrity = ( truth_strength * 0.4 + consciousness_level * 0.3 + scientific_validity * 0.3 ) return max(0.0, min(1.0, integrity)) def _analyze_multi_dimensional_coherence(self, truth: Dict, consciousness: Dict, science: Dict) -> Dict: """Analyze coherence across different verification dimensions""" dimensional_scores = { 'truth_consciousness_alignment': abs( truth.get('binding_strength', 0.5) - consciousness.get('consciousness_composite', 0.5) ), 'truth_science_alignment': abs( truth.get('binding_strength', 0.5) - science.get('overall_validity', 0.5) ), 'consciousness_science_alignment': abs( consciousness.get('consciousness_composite', 0.5) - science.get('overall_validity', 0.5) ) } overall_coherence = 1.0 - np.mean(list(dimensional_scores.values())) return { "overall_coherence": float(overall_coherence), "dimensional_alignment": dimensional_scores, "coherence_grade": "high" if overall_coherence > 0.8 else "medium" if overall_coherence > 0.6 else "low" } def _generate_verification_seal(self, claim_data: Dict, integrity_score: float, coherence: Dict) -> Dict: """Generate apex verification seal""" seal_data = { 'claim_hash': hashlib.sha256(json.dumps(claim_data).encode()).hexdigest(), 'integrity_score': integrity_score, 'coherence_level': coherence['overall_coherence'], 'timestamp': time.time_ns(), 'apex_version': '1.1' } seal_hash = hashlib.sha3_512(json.dumps(seal_data).encode()).hexdigest() return { "seal_hash": seal_hash[:64], "seal_data": seal_data, "verification_level": "APEX_CERTIFIED" if integrity_score > 0.8 else "STANDARD_VERIFIED" } def _calculate_composite_confidence(self, truth: Dict, consciousness: Dict, science: Dict) -> float: """Calculate composite confidence score""" confidence_factors = [ truth.get('binding_strength', 0.5), consciousness.get('consciousness_composite', 0.5), science.get('overall_validity', 0.5), truth.get('mathematical_certainty', 0.5) ] return float(np.mean(confidence_factors)) # ============================================================================= # INTEGRATION ENGINE # ============================================================================= class IntegrationEngine: def __init__(self): self.component_registry = {} self.data_flow_graph = nx.DiGraph() self.workflow_history = [] def register_component(self, component: SystemComponent): self.component_registry[component.component_type] = component for dep in component.dependencies: self.data_flow_graph.add_edge(dep, component.component_type) def execute_workflow(self, start_component: ComponentType, input_data: Dict) -> Dict: current_component = start_component current_data = input_data results = {} while current_component: component = self.component_registry[current_component] instance = component.implementation method_name = component.interface.methods[0] method = getattr(instance, method_name) result = method(current_data) results[current_component] = result next_components = list(self.data_flow_graph.successors(current_component)) if not next_components: break current_component = next_components[0] current_data = result workflow_result = { 'component_results': results, 'final_output': current_data, 'timestamp': datetime.utcnow().isoformat(), 'workflow_id': hashlib.sha256(str(input_data).encode()).hexdigest()[:16] } self.workflow_history.append(workflow_result) return workflow_result # ============================================================================= # AGI FRAME 1.1 MAIN FRAMEWORK # ============================================================================= class AGIFrame: def __init__(self): self.integrator = IntegrationEngine() self.initialize_components() def initialize_components(self): # Quantum Truth Component truth_component = SystemComponent( component_type=ComponentType.QUANTUM_TRUTH, interface=ComponentInterface( input_schema={'claim_data': 'dict', 'evidence': 'list'}, output_schema={'analysis': 'dict'}, methods=['analyze_claim'], error_handling={'invalid_input': 'return_error', 'processing_error': 'retry'} ), dependencies=[], implementation=QuantumTruthComponent() ) # Bayesian Consciousness Component consciousness_component = SystemComponent( component_type=ComponentType.BAYESIAN_CONSCIOUSNESS, interface=ComponentInterface( input_schema={'neural_data': 'ndarray'}, output_schema={'metrics': 'dict'}, methods=['analyze_consciousness'], error_handling={'invalid_data': 'skip', 'model_error': 'fallback'} ), dependencies=[ComponentType.QUANTUM_TRUTH], implementation=BayesianConsciousnessComponent() ) # Scientific Validation Component science_component = SystemComponent( component_type=ComponentType.SCIENTIFIC_VALIDATION, interface=ComponentInterface( input_schema={'claim_data': 'dict', 'evidence': 'list'}, output_schema={'validation_results': 'dict'}, methods=['validate_claim'], error_handling={'insufficient_data': 'return_partial', 'analysis_error': 'log_only'} ), dependencies=[ComponentType.QUANTUM_TRUTH], implementation=ScientificValidationComponent() ) # Apex Verification Component apex_component = SystemComponent( component_type=ComponentType.APEX_VERIFICATION, interface=ComponentInterface( input_schema={'claim_data': 'dict', 'truth_results': 'dict', 'consciousness_results': 'dict', 'science_results': 'dict'}, output_schema={'apex_verification': 'dict'}, methods=['perform_apex_verification'], error_handling={'integration_error': 'partial_verification', 'data_mismatch': 'reconcile'} ), dependencies=[ComponentType.QUANTUM_TRUTH, ComponentType.BAYESIAN_CONSCIOUSNESS, ComponentType.SCIENTIFIC_VALIDATION], implementation=ApexVerificationComponent() ) components = [truth_component, consciousness_component, science_component, apex_component] for component in components: self.integrator.register_component(component) def analyze(self, claim: str, evidence: List[Dict], neural_data: np.ndarray) -> Dict: claim_data = { 'content': claim, 'logical_consistency': 0.7, 'empirical_support': 0.6, 'historical_precedents': ['context_patterns'], 'source_quality': 0.8, 'citation_count': 25 } input_data = { 'claim_data': claim_data, 'evidence': evidence, 'neural_data': neural_data } workflow_result = self.integrator.execute_workflow(ComponentType.QUANTUM_TRUTH, input_data) return self._synthesize_results(workflow_result) def _synthesize_results(self, workflow_result: Dict) -> Dict: component_results = workflow_result['component_results'] truth_results = component_results.get(ComponentType.QUANTUM_TRUTH, {}) consciousness_results = component_results.get(ComponentType.BAYESIAN_CONSCIOUSNESS, {}) science_results = component_results.get(ComponentType.SCIENTIFIC_VALIDATION, {}) apex_results = component_results.get(ComponentType.APEX_VERIFICATION, {}) overall_confidence = apex_results.get('composite_confidence', 0.5) return { 'overall_confidence': float(overall_confidence), 'truth_metrics': truth_results, 'consciousness_metrics': consciousness_results, 'scientific_validation': science_results, 'apex_verification': apex_results, 'workflow_metadata': { 'execution_path': list(component_results.keys()), 'timestamp': workflow_result['timestamp'], 'workflow_id': workflow_result['workflow_id'] }, 'integrated_assessment': self._generate_assessment(overall_confidence, apex_results) } def _generate_assessment(self, confidence: float, apex_results: Dict) -> str: apex_certified = apex_results.get('apex_certified', False) if apex_certified and confidence > 0.9: return "APEX_CERTIFIED_HIGH_CONFIDENCE" elif apex_certified: return "APEX_CERTIFIED" elif confidence > 0.8: return "HIGHLY_RELIABLE" elif confidence > 0.7: return "MODERATELY_RELIABLE" elif confidence > 0.5: return "CAUTIOUSLY_RELIABLE" else: return "UNRELIABLE" # ============================================================================= # PRODUCTION USAGE # ============================================================================= def main(): """Main execution function""" framework = AGIFrame() # Sample data for analysis claim = "Consciousness represents a fundamental property of universal information processing" evidence = [ {'content': 'Neuroscientific research on integrated information', 'strength': 0.8, 'replication_count': 3}, {'content': 'Quantum consciousness theories', 'strength': 0.6, 'replication_count': 1}, {'content': 'Philosophical frameworks', 'strength': 0.7, 'replication_count': 2} ] # Generate sample neural data neural_data = np.random.randn(100, 256) + np.sin(np.linspace(0, 4*np.pi, 256)) # Execute comprehensive analysis results = framework.analyze(claim, evidence, neural_data) print("AGI FRAME 1.1 - COMPREHENSIVE ANALYSIS RESULTS") print("=" * 60) print(f"Claim: {claim[:80]}...") print(f"Overall Confidence: {results['overall_confidence']:.3f}") print(f"Assessment: {results['integrated_assessment']}") print(f"Truth Binding: {results['truth_metrics']['binding_strength']:.3f}") print(f"Consciousness Composite: {results['consciousness_metrics']['consciousness_composite']:.3f}") print(f"Scientific Validity: {results['scientific_validation']['overall_validity']:.3f}") apex_verification = results['apex_verification'] if apex_verification: print(f"Apex Integrity: {apex_verification.get('apex_integrity_score', 0):.3f}") print(f"Coherence Level: {apex_verification.get('multi_dimensional_coherence', {}).get('overall_coherence', 0):.3f}") print(f"Certified: {apex_verification.get('apex_certified', False)}") if __name__ == "__main__": main()