Create NEURO_COSMIC
Browse files- NEURO_COSMIC +304 -0
NEURO_COSMIC
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
NEURO-COSMIC DATA ANALYSIS FRAMEWORK v1.0
|
| 4 |
+
Production version: Core scientific analysis framework for neural and cosmological data.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import hashlib
|
| 8 |
+
import hmac
|
| 9 |
+
import os
|
| 10 |
+
import secrets
|
| 11 |
+
from dataclasses import dataclass, field
|
| 12 |
+
from datetime import datetime, timedelta
|
| 13 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 14 |
+
import logging
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import pandas as pd
|
| 18 |
+
from scipy import stats, signal
|
| 19 |
+
|
| 20 |
+
# Configure logging
|
| 21 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 22 |
+
logger = logging.getLogger('neuro_cosmic_framework')
|
| 23 |
+
|
| 24 |
+
# =============================================================================
|
| 25 |
+
# CONFIGURATION & SECURITY
|
| 26 |
+
# =============================================================================
|
| 27 |
+
|
| 28 |
+
@dataclass
|
| 29 |
+
class FrameworkConfig:
|
| 30 |
+
max_requests_per_minute: int = 100
|
| 31 |
+
cache_ttl_hours: int = 24
|
| 32 |
+
max_file_size_mb: int = 100
|
| 33 |
+
allowed_data_types: Tuple[str, ...] = ('eeg', 'cosmological', 'behavioral')
|
| 34 |
+
secret_key: str = field(default_factory=lambda: os.environ.get('FRAMEWORK_SECRET', secrets.token_hex(32)))
|
| 35 |
+
|
| 36 |
+
def __post_init__(self):
|
| 37 |
+
if len(self.secret_key) < 32:
|
| 38 |
+
raise ValueError("Secret key must be at least 32 characters")
|
| 39 |
+
|
| 40 |
+
class SecurityError(Exception):
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
class DataValidationError(Exception):
|
| 44 |
+
pass
|
| 45 |
+
|
| 46 |
+
# =============================================================================
|
| 47 |
+
# SECURE AUTHENTICATION
|
| 48 |
+
# =============================================================================
|
| 49 |
+
|
| 50 |
+
class SecureAuthManager:
|
| 51 |
+
def __init__(self, secret_key: str):
|
| 52 |
+
if len(secret_key) < 32:
|
| 53 |
+
raise SecurityError("Insufficient secret key length")
|
| 54 |
+
self.secret_key = secret_key.encode('utf-8')
|
| 55 |
+
self.user_keys: Dict[str, str] = {}
|
| 56 |
+
|
| 57 |
+
def create_user(self, user_id: str) -> str:
|
| 58 |
+
if not user_id or not isinstance(user_id, str):
|
| 59 |
+
raise SecurityError("Invalid user ID")
|
| 60 |
+
api_key = secrets.token_urlsafe(32)
|
| 61 |
+
key_hash = self._hash_key(api_key)
|
| 62 |
+
self.user_keys[user_id] = key_hash
|
| 63 |
+
return api_key
|
| 64 |
+
|
| 65 |
+
def authenticate(self, user_id: str, api_key: str) -> bool:
|
| 66 |
+
if not user_id or not api_key:
|
| 67 |
+
return False
|
| 68 |
+
stored_hash = self.user_keys.get(user_id)
|
| 69 |
+
if not stored_hash:
|
| 70 |
+
return False
|
| 71 |
+
return hmac.compare_digest(stored_hash, self._hash_key(api_key))
|
| 72 |
+
|
| 73 |
+
def _hash_key(self, key: str) -> str:
|
| 74 |
+
return hmac.new(self.secret_key, key.encode('utf-8'), 'sha256').hexdigest()
|
| 75 |
+
|
| 76 |
+
# =============================================================================
|
| 77 |
+
# DATA VALIDATION & SANITIZATION
|
| 78 |
+
# =============================================================================
|
| 79 |
+
|
| 80 |
+
class DataValidator:
|
| 81 |
+
@staticmethod
|
| 82 |
+
def validate_eeg_data(df: pd.DataFrame) -> bool:
|
| 83 |
+
required_columns = {'timestamp', 'channel_1'}
|
| 84 |
+
if not required_columns.issubset(df.columns):
|
| 85 |
+
return False
|
| 86 |
+
if not pd.api.types.is_numeric_dtype(df['timestamp']):
|
| 87 |
+
return False
|
| 88 |
+
if len(df) > 1:
|
| 89 |
+
time_diff = np.diff(df['timestamp'])
|
| 90 |
+
if np.any(time_diff <= 0):
|
| 91 |
+
return False
|
| 92 |
+
return True
|
| 93 |
+
|
| 94 |
+
@staticmethod
|
| 95 |
+
def validate_cosmological_data(df: pd.DataFrame) -> bool:
|
| 96 |
+
required_columns = {'redshift', 'distance'}
|
| 97 |
+
if not required_columns.issubset(df.columns):
|
| 98 |
+
return False
|
| 99 |
+
if np.any(df['redshift'] < 0):
|
| 100 |
+
return False
|
| 101 |
+
if np.any(df['distance'] <= 0):
|
| 102 |
+
return False
|
| 103 |
+
return True
|
| 104 |
+
|
| 105 |
+
@staticmethod
|
| 106 |
+
def sanitize_input_data(df: pd.DataFrame) -> pd.DataFrame:
|
| 107 |
+
numeric_df = df.select_dtypes(include=[np.number])
|
| 108 |
+
sanitized_df = numeric_df.fillna(method='ffill').fillna(method='bfill')
|
| 109 |
+
return sanitized_df
|
| 110 |
+
|
| 111 |
+
# =============================================================================
|
| 112 |
+
# SCIENTIFIC ANALYSIS ENGINES
|
| 113 |
+
# =============================================================================
|
| 114 |
+
|
| 115 |
+
class NeuralAnalysisEngine:
|
| 116 |
+
def __init__(self):
|
| 117 |
+
self.supported_metrics = ['power_spectrum', 'coherence', 'correlation']
|
| 118 |
+
|
| 119 |
+
def analyze_eeg_power_spectrum(self, eeg_data: pd.DataFrame) -> Dict[str, Any]:
|
| 120 |
+
if not DataValidator.validate_eeg_data(eeg_data):
|
| 121 |
+
raise DataValidationError("Invalid EEG data format")
|
| 122 |
+
signal_columns = [col for col in eeg_data.columns if col.startswith('channel_')]
|
| 123 |
+
results = {}
|
| 124 |
+
for channel in signal_columns:
|
| 125 |
+
signal_data = eeg_data[channel].values
|
| 126 |
+
freqs, psd = signal.welch(signal_data, fs=250)
|
| 127 |
+
bands = {
|
| 128 |
+
'delta': (0.5, 4),
|
| 129 |
+
'theta': (4, 8),
|
| 130 |
+
'alpha': (8, 13),
|
| 131 |
+
'beta': (13, 30),
|
| 132 |
+
'gamma': (30, 50)
|
| 133 |
+
}
|
| 134 |
+
band_powers = {}
|
| 135 |
+
for band, (low, high) in bands.items():
|
| 136 |
+
band_mask = (freqs >= low) & (freqs <= high)
|
| 137 |
+
band_powers[band] = float(np.trapz(psd[band_mask], freqs[band_mask]))
|
| 138 |
+
results[channel] = {
|
| 139 |
+
'total_power': float(np.trapz(psd, freqs)),
|
| 140 |
+
'band_powers': band_powers,
|
| 141 |
+
'peak_frequency': float(freqs[np.argmax(psd)])
|
| 142 |
+
}
|
| 143 |
+
return results
|
| 144 |
+
|
| 145 |
+
def compute_functional_connectivity(self, eeg_data: pd.DataFrame) -> pd.DataFrame:
|
| 146 |
+
signal_columns = [col for col in eeg_data.columns if col.startswith('channel_')]
|
| 147 |
+
signals = eeg_data[signal_columns].values.T
|
| 148 |
+
correlation_matrix = np.corrcoef(signals)
|
| 149 |
+
return pd.DataFrame(
|
| 150 |
+
correlation_matrix,
|
| 151 |
+
index=signal_columns,
|
| 152 |
+
columns=signal_columns
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
class CosmologicalAnalysisEngine:
|
| 156 |
+
def analyze_hubble_relation(self, cosmic_data: pd.DataFrame) -> Dict[str, Any]:
|
| 157 |
+
if not DataValidator.validate_cosmological_data(cosmic_data):
|
| 158 |
+
raise DataValidationError("Invalid cosmological data format")
|
| 159 |
+
c = 299792.458
|
| 160 |
+
redshifts = cosmic_data['redshift'].values
|
| 161 |
+
distances = cosmic_data['distance'].values
|
| 162 |
+
velocities = c * redshifts
|
| 163 |
+
valid_mask = (distances > 0) & (redshifts > 0) & (redshifts < 0.1)
|
| 164 |
+
if np.sum(valid_mask) < 2:
|
| 165 |
+
return {'error': 'Insufficient valid data for Hubble relation analysis'}
|
| 166 |
+
v_valid = velocities[valid_mask]
|
| 167 |
+
d_valid = distances[valid_mask]
|
| 168 |
+
slope, intercept, r_value, p_value, std_err = stats.linregress(d_valid, v_valid)
|
| 169 |
+
return {
|
| 170 |
+
'hubble_constant_estimate': float(slope),
|
| 171 |
+
'correlation_coefficient': float(r_value),
|
| 172 |
+
'p_value': float(p_value),
|
| 173 |
+
'standard_error': float(std_err),
|
| 174 |
+
'data_points_used': int(np.sum(valid_mask))
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
class CrossDomainAnalyzer:
|
| 178 |
+
def __init__(self):
|
| 179 |
+
self.neural_engine = NeuralAnalysisEngine()
|
| 180 |
+
self.cosmic_engine = CosmologicalAnalysisEngine()
|
| 181 |
+
|
| 182 |
+
def analyze_correlations(self, neural_data: pd.DataFrame, cosmic_data: pd.DataFrame, neural_metric: str = 'total_power') -> Dict[str, Any]:
|
| 183 |
+
neural_results = self.neural_engine.analyze_eeg_power_spectrum(neural_data)
|
| 184 |
+
cosmic_results = self.cosmic_engine.analyze_hubble_relation(cosmic_data)
|
| 185 |
+
neural_metrics = [channel_data[neural_metric] for channel_data in neural_results.values() if neural_metric in channel_data]
|
| 186 |
+
return {
|
| 187 |
+
'neural_analysis': neural_results,
|
| 188 |
+
'cosmological_analysis': cosmic_results,
|
| 189 |
+
'correlation_analysis': {
|
| 190 |
+
'status': 'exploratory',
|
| 191 |
+
'disclaimer': 'Cross-domain correlations are speculative and require extensive validation',
|
| 192 |
+
'neural_metrics_available': list(neural_metrics),
|
| 193 |
+
'cosmic_metrics_available': list(cosmic_results.keys()) if isinstance(cosmic_results, dict) else []
|
| 194 |
+
}
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
# =============================================================================
|
| 198 |
+
# PRODUCTION-READY API FRAMEWORK
|
| 199 |
+
# =============================================================================
|
| 200 |
+
|
| 201 |
+
@dataclass
|
| 202 |
+
class AnalysisRequest:
|
| 203 |
+
user_id: str
|
| 204 |
+
analysis_type: str
|
| 205 |
+
neural_data: Optional[pd.DataFrame] = None
|
| 206 |
+
cosmic_data: Optional[pd.DataFrame] = None
|
| 207 |
+
parameters: Dict[str, Any] = None
|
| 208 |
+
|
| 209 |
+
def __post_init__(self):
|
| 210 |
+
if self.analysis_type not in ['neural', 'cosmological', 'cross_domain']:
|
| 211 |
+
raise ValueError(f"Invalid analysis type: {self.analysis_type}")
|
| 212 |
+
if self.analysis_type in ['neural', 'cross_domain'] and self.neural_data is None:
|
| 213 |
+
raise ValueError("Neural data required for neural analysis")
|
| 214 |
+
if self.analysis_type in ['cosmological', 'cross_domain'] and self.cosmic_data is None:
|
| 215 |
+
raise ValueError("Cosmological data required for cosmological analysis")
|
| 216 |
+
|
| 217 |
+
@dataclass
|
| 218 |
+
class AnalysisResult:
|
| 219 |
+
request_id: str
|
| 220 |
+
timestamp: str
|
| 221 |
+
analysis_type: str
|
| 222 |
+
results: Dict[str, Any]
|
| 223 |
+
processing_time: float
|
| 224 |
+
warnings: List[str]
|
| 225 |
+
metadata: Dict[str, Any]
|
| 226 |
+
|
| 227 |
+
class AnalysisFramework:
|
| 228 |
+
def __init__(self, config: FrameworkConfig):
|
| 229 |
+
self.config = config
|
| 230 |
+
self.auth_manager = SecureAuthManager(config.secret_key)
|
| 231 |
+
self.validator = DataValidator()
|
| 232 |
+
self.cross_analyzer = CrossDomainAnalyzer()
|
| 233 |
+
self.rate_limiter = RateLimiter(config.max_requests_per_minute)
|
| 234 |
+
self.neural_engine = NeuralAnalysisEngine()
|
| 235 |
+
self.cosmic_engine = CosmologicalAnalysisEngine()
|
| 236 |
+
logger.info("Analysis framework initialized")
|
| 237 |
+
|
| 238 |
+
async def process_request(self, request: AnalysisRequest) -> AnalysisResult:
|
| 239 |
+
start_time = datetime.utcnow()
|
| 240 |
+
request_id = hashlib.sha256(f"{request.user_id}{start_time.isoformat()}".encode()).hexdigest()[:16]
|
| 241 |
+
try:
|
| 242 |
+
if not self.rate_limiter.check_limit(request.user_id):
|
| 243 |
+
raise SecurityError("Rate limit exceeded")
|
| 244 |
+
if request.neural_data is not None:
|
| 245 |
+
if not self.validator.validate_eeg_data(request.neural_data):
|
| 246 |
+
raise DataValidationError("Invalid EEG data format")
|
| 247 |
+
neural_data = self.validator.sanitize_input_data(request.neural_data)
|
| 248 |
+
else:
|
| 249 |
+
neural_data = None
|
| 250 |
+
if request.cosmic_data is not None:
|
| 251 |
+
if not self.validator.validate_cosmological_data(request.cosmic_data):
|
| 252 |
+
raise DataValidationError("Invalid cosmological data format")
|
| 253 |
+
cosmic_data = self.validator.sanitize_input_data(request.cosmic_data)
|
| 254 |
+
else:
|
| 255 |
+
cosmic_data = None
|
| 256 |
+
if request.analysis_type == 'neural':
|
| 257 |
+
results = self.neural_engine.analyze_eeg_power_spectrum(neural_data)
|
| 258 |
+
elif request.analysis_type == 'cosmological':
|
| 259 |
+
results = self.cosmic_engine.analyze_hubble_relation(cosmic_data)
|
| 260 |
+
elif request.analysis_type == 'cross_domain':
|
| 261 |
+
results = self.cross_analyzer.analyze_correlations(neural_data, cosmic_data)
|
| 262 |
+
else:
|
| 263 |
+
raise ValueError(f"Unsupported analysis type: {request.analysis_type}")
|
| 264 |
+
processing_time = (datetime.utcnow() - start_time).total_seconds()
|
| 265 |
+
return AnalysisResult(
|
| 266 |
+
request_id=request_id,
|
| 267 |
+
timestamp=start_time.isoformat(),
|
| 268 |
+
analysis_type=request.analysis_type,
|
| 269 |
+
results=results,
|
| 270 |
+
processing_time=processing_time,
|
| 271 |
+
warnings=self._generate_warnings(results),
|
| 272 |
+
metadata={
|
| 273 |
+
'data_points_neural': len(neural_data) if neural_data is not None else 0,
|
| 274 |
+
'data_points_cosmic': len(cosmic_data) if cosmic_data is not None else 0,
|
| 275 |
+
'framework_version': '1.0'
|
| 276 |
+
}
|
| 277 |
+
)
|
| 278 |
+
except Exception as e:
|
| 279 |
+
logger.error(f"Analysis failed for request {request_id}: {str(e)}")
|
| 280 |
+
raise
|
| 281 |
+
|
| 282 |
+
def _generate_warnings(self, results: Dict[str, Any]) -> List[str]:
|
| 283 |
+
warnings = []
|
| 284 |
+
if 'correlation_analysis' in results:
|
| 285 |
+
warnings.append("Cross-domain correlations are exploratory and require rigorous validation")
|
| 286 |
+
if isinstance(results, dict) and 'p_value' in results:
|
| 287 |
+
if results['p_value'] > 0.05:
|
| 288 |
+
warnings.append("Results are not statistically significant (p > 0.05)")
|
| 289 |
+
return warnings
|
| 290 |
+
|
| 291 |
+
class RateLimiter:
|
| 292 |
+
def __init__(self, requests_per_minute: int):
|
| 293 |
+
self.requests_per_minute = requests_per_minute
|
| 294 |
+
self.requests: Dict[str, List[datetime]] = {}
|
| 295 |
+
def check_limit(self, user_id: str) -> bool:
|
| 296 |
+
now = datetime.utcnow()
|
| 297 |
+
minute_ago = now - timedelta(minutes=1)
|
| 298 |
+
if user_id not in self.requests:
|
| 299 |
+
self.requests[user_id] = []
|
| 300 |
+
self.requests[user_id] = [req_time for req_time in self.requests[user_id] if req_time > minute_ago]
|
| 301 |
+
if len(self.requests[user_id]) >= self.requests_per_minute:
|
| 302 |
+
return False
|
| 303 |
+
self.requests[user_id].append(now)
|
| 304 |
+
return True
|