upgraedd commited on
Commit
a80f487
·
verified ·
1 Parent(s): 81fef75

Create NEURO_COSMIC

Browse files
Files changed (1) hide show
  1. NEURO_COSMIC +304 -0
NEURO_COSMIC ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ NEURO-COSMIC DATA ANALYSIS FRAMEWORK v1.0
4
+ Production version: Core scientific analysis framework for neural and cosmological data.
5
+ """
6
+
7
+ import hashlib
8
+ import hmac
9
+ import os
10
+ import secrets
11
+ from dataclasses import dataclass, field
12
+ from datetime import datetime, timedelta
13
+ from typing import Any, Dict, List, Optional, Tuple
14
+ import logging
15
+
16
+ import numpy as np
17
+ import pandas as pd
18
+ from scipy import stats, signal
19
+
20
+ # Configure logging
21
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
22
+ logger = logging.getLogger('neuro_cosmic_framework')
23
+
24
+ # =============================================================================
25
+ # CONFIGURATION & SECURITY
26
+ # =============================================================================
27
+
28
+ @dataclass
29
+ class FrameworkConfig:
30
+ max_requests_per_minute: int = 100
31
+ cache_ttl_hours: int = 24
32
+ max_file_size_mb: int = 100
33
+ allowed_data_types: Tuple[str, ...] = ('eeg', 'cosmological', 'behavioral')
34
+ secret_key: str = field(default_factory=lambda: os.environ.get('FRAMEWORK_SECRET', secrets.token_hex(32)))
35
+
36
+ def __post_init__(self):
37
+ if len(self.secret_key) < 32:
38
+ raise ValueError("Secret key must be at least 32 characters")
39
+
40
+ class SecurityError(Exception):
41
+ pass
42
+
43
+ class DataValidationError(Exception):
44
+ pass
45
+
46
+ # =============================================================================
47
+ # SECURE AUTHENTICATION
48
+ # =============================================================================
49
+
50
+ class SecureAuthManager:
51
+ def __init__(self, secret_key: str):
52
+ if len(secret_key) < 32:
53
+ raise SecurityError("Insufficient secret key length")
54
+ self.secret_key = secret_key.encode('utf-8')
55
+ self.user_keys: Dict[str, str] = {}
56
+
57
+ def create_user(self, user_id: str) -> str:
58
+ if not user_id or not isinstance(user_id, str):
59
+ raise SecurityError("Invalid user ID")
60
+ api_key = secrets.token_urlsafe(32)
61
+ key_hash = self._hash_key(api_key)
62
+ self.user_keys[user_id] = key_hash
63
+ return api_key
64
+
65
+ def authenticate(self, user_id: str, api_key: str) -> bool:
66
+ if not user_id or not api_key:
67
+ return False
68
+ stored_hash = self.user_keys.get(user_id)
69
+ if not stored_hash:
70
+ return False
71
+ return hmac.compare_digest(stored_hash, self._hash_key(api_key))
72
+
73
+ def _hash_key(self, key: str) -> str:
74
+ return hmac.new(self.secret_key, key.encode('utf-8'), 'sha256').hexdigest()
75
+
76
+ # =============================================================================
77
+ # DATA VALIDATION & SANITIZATION
78
+ # =============================================================================
79
+
80
+ class DataValidator:
81
+ @staticmethod
82
+ def validate_eeg_data(df: pd.DataFrame) -> bool:
83
+ required_columns = {'timestamp', 'channel_1'}
84
+ if not required_columns.issubset(df.columns):
85
+ return False
86
+ if not pd.api.types.is_numeric_dtype(df['timestamp']):
87
+ return False
88
+ if len(df) > 1:
89
+ time_diff = np.diff(df['timestamp'])
90
+ if np.any(time_diff <= 0):
91
+ return False
92
+ return True
93
+
94
+ @staticmethod
95
+ def validate_cosmological_data(df: pd.DataFrame) -> bool:
96
+ required_columns = {'redshift', 'distance'}
97
+ if not required_columns.issubset(df.columns):
98
+ return False
99
+ if np.any(df['redshift'] < 0):
100
+ return False
101
+ if np.any(df['distance'] <= 0):
102
+ return False
103
+ return True
104
+
105
+ @staticmethod
106
+ def sanitize_input_data(df: pd.DataFrame) -> pd.DataFrame:
107
+ numeric_df = df.select_dtypes(include=[np.number])
108
+ sanitized_df = numeric_df.fillna(method='ffill').fillna(method='bfill')
109
+ return sanitized_df
110
+
111
+ # =============================================================================
112
+ # SCIENTIFIC ANALYSIS ENGINES
113
+ # =============================================================================
114
+
115
+ class NeuralAnalysisEngine:
116
+ def __init__(self):
117
+ self.supported_metrics = ['power_spectrum', 'coherence', 'correlation']
118
+
119
+ def analyze_eeg_power_spectrum(self, eeg_data: pd.DataFrame) -> Dict[str, Any]:
120
+ if not DataValidator.validate_eeg_data(eeg_data):
121
+ raise DataValidationError("Invalid EEG data format")
122
+ signal_columns = [col for col in eeg_data.columns if col.startswith('channel_')]
123
+ results = {}
124
+ for channel in signal_columns:
125
+ signal_data = eeg_data[channel].values
126
+ freqs, psd = signal.welch(signal_data, fs=250)
127
+ bands = {
128
+ 'delta': (0.5, 4),
129
+ 'theta': (4, 8),
130
+ 'alpha': (8, 13),
131
+ 'beta': (13, 30),
132
+ 'gamma': (30, 50)
133
+ }
134
+ band_powers = {}
135
+ for band, (low, high) in bands.items():
136
+ band_mask = (freqs >= low) & (freqs <= high)
137
+ band_powers[band] = float(np.trapz(psd[band_mask], freqs[band_mask]))
138
+ results[channel] = {
139
+ 'total_power': float(np.trapz(psd, freqs)),
140
+ 'band_powers': band_powers,
141
+ 'peak_frequency': float(freqs[np.argmax(psd)])
142
+ }
143
+ return results
144
+
145
+ def compute_functional_connectivity(self, eeg_data: pd.DataFrame) -> pd.DataFrame:
146
+ signal_columns = [col for col in eeg_data.columns if col.startswith('channel_')]
147
+ signals = eeg_data[signal_columns].values.T
148
+ correlation_matrix = np.corrcoef(signals)
149
+ return pd.DataFrame(
150
+ correlation_matrix,
151
+ index=signal_columns,
152
+ columns=signal_columns
153
+ )
154
+
155
+ class CosmologicalAnalysisEngine:
156
+ def analyze_hubble_relation(self, cosmic_data: pd.DataFrame) -> Dict[str, Any]:
157
+ if not DataValidator.validate_cosmological_data(cosmic_data):
158
+ raise DataValidationError("Invalid cosmological data format")
159
+ c = 299792.458
160
+ redshifts = cosmic_data['redshift'].values
161
+ distances = cosmic_data['distance'].values
162
+ velocities = c * redshifts
163
+ valid_mask = (distances > 0) & (redshifts > 0) & (redshifts < 0.1)
164
+ if np.sum(valid_mask) < 2:
165
+ return {'error': 'Insufficient valid data for Hubble relation analysis'}
166
+ v_valid = velocities[valid_mask]
167
+ d_valid = distances[valid_mask]
168
+ slope, intercept, r_value, p_value, std_err = stats.linregress(d_valid, v_valid)
169
+ return {
170
+ 'hubble_constant_estimate': float(slope),
171
+ 'correlation_coefficient': float(r_value),
172
+ 'p_value': float(p_value),
173
+ 'standard_error': float(std_err),
174
+ 'data_points_used': int(np.sum(valid_mask))
175
+ }
176
+
177
+ class CrossDomainAnalyzer:
178
+ def __init__(self):
179
+ self.neural_engine = NeuralAnalysisEngine()
180
+ self.cosmic_engine = CosmologicalAnalysisEngine()
181
+
182
+ def analyze_correlations(self, neural_data: pd.DataFrame, cosmic_data: pd.DataFrame, neural_metric: str = 'total_power') -> Dict[str, Any]:
183
+ neural_results = self.neural_engine.analyze_eeg_power_spectrum(neural_data)
184
+ cosmic_results = self.cosmic_engine.analyze_hubble_relation(cosmic_data)
185
+ neural_metrics = [channel_data[neural_metric] for channel_data in neural_results.values() if neural_metric in channel_data]
186
+ return {
187
+ 'neural_analysis': neural_results,
188
+ 'cosmological_analysis': cosmic_results,
189
+ 'correlation_analysis': {
190
+ 'status': 'exploratory',
191
+ 'disclaimer': 'Cross-domain correlations are speculative and require extensive validation',
192
+ 'neural_metrics_available': list(neural_metrics),
193
+ 'cosmic_metrics_available': list(cosmic_results.keys()) if isinstance(cosmic_results, dict) else []
194
+ }
195
+ }
196
+
197
+ # =============================================================================
198
+ # PRODUCTION-READY API FRAMEWORK
199
+ # =============================================================================
200
+
201
+ @dataclass
202
+ class AnalysisRequest:
203
+ user_id: str
204
+ analysis_type: str
205
+ neural_data: Optional[pd.DataFrame] = None
206
+ cosmic_data: Optional[pd.DataFrame] = None
207
+ parameters: Dict[str, Any] = None
208
+
209
+ def __post_init__(self):
210
+ if self.analysis_type not in ['neural', 'cosmological', 'cross_domain']:
211
+ raise ValueError(f"Invalid analysis type: {self.analysis_type}")
212
+ if self.analysis_type in ['neural', 'cross_domain'] and self.neural_data is None:
213
+ raise ValueError("Neural data required for neural analysis")
214
+ if self.analysis_type in ['cosmological', 'cross_domain'] and self.cosmic_data is None:
215
+ raise ValueError("Cosmological data required for cosmological analysis")
216
+
217
+ @dataclass
218
+ class AnalysisResult:
219
+ request_id: str
220
+ timestamp: str
221
+ analysis_type: str
222
+ results: Dict[str, Any]
223
+ processing_time: float
224
+ warnings: List[str]
225
+ metadata: Dict[str, Any]
226
+
227
+ class AnalysisFramework:
228
+ def __init__(self, config: FrameworkConfig):
229
+ self.config = config
230
+ self.auth_manager = SecureAuthManager(config.secret_key)
231
+ self.validator = DataValidator()
232
+ self.cross_analyzer = CrossDomainAnalyzer()
233
+ self.rate_limiter = RateLimiter(config.max_requests_per_minute)
234
+ self.neural_engine = NeuralAnalysisEngine()
235
+ self.cosmic_engine = CosmologicalAnalysisEngine()
236
+ logger.info("Analysis framework initialized")
237
+
238
+ async def process_request(self, request: AnalysisRequest) -> AnalysisResult:
239
+ start_time = datetime.utcnow()
240
+ request_id = hashlib.sha256(f"{request.user_id}{start_time.isoformat()}".encode()).hexdigest()[:16]
241
+ try:
242
+ if not self.rate_limiter.check_limit(request.user_id):
243
+ raise SecurityError("Rate limit exceeded")
244
+ if request.neural_data is not None:
245
+ if not self.validator.validate_eeg_data(request.neural_data):
246
+ raise DataValidationError("Invalid EEG data format")
247
+ neural_data = self.validator.sanitize_input_data(request.neural_data)
248
+ else:
249
+ neural_data = None
250
+ if request.cosmic_data is not None:
251
+ if not self.validator.validate_cosmological_data(request.cosmic_data):
252
+ raise DataValidationError("Invalid cosmological data format")
253
+ cosmic_data = self.validator.sanitize_input_data(request.cosmic_data)
254
+ else:
255
+ cosmic_data = None
256
+ if request.analysis_type == 'neural':
257
+ results = self.neural_engine.analyze_eeg_power_spectrum(neural_data)
258
+ elif request.analysis_type == 'cosmological':
259
+ results = self.cosmic_engine.analyze_hubble_relation(cosmic_data)
260
+ elif request.analysis_type == 'cross_domain':
261
+ results = self.cross_analyzer.analyze_correlations(neural_data, cosmic_data)
262
+ else:
263
+ raise ValueError(f"Unsupported analysis type: {request.analysis_type}")
264
+ processing_time = (datetime.utcnow() - start_time).total_seconds()
265
+ return AnalysisResult(
266
+ request_id=request_id,
267
+ timestamp=start_time.isoformat(),
268
+ analysis_type=request.analysis_type,
269
+ results=results,
270
+ processing_time=processing_time,
271
+ warnings=self._generate_warnings(results),
272
+ metadata={
273
+ 'data_points_neural': len(neural_data) if neural_data is not None else 0,
274
+ 'data_points_cosmic': len(cosmic_data) if cosmic_data is not None else 0,
275
+ 'framework_version': '1.0'
276
+ }
277
+ )
278
+ except Exception as e:
279
+ logger.error(f"Analysis failed for request {request_id}: {str(e)}")
280
+ raise
281
+
282
+ def _generate_warnings(self, results: Dict[str, Any]) -> List[str]:
283
+ warnings = []
284
+ if 'correlation_analysis' in results:
285
+ warnings.append("Cross-domain correlations are exploratory and require rigorous validation")
286
+ if isinstance(results, dict) and 'p_value' in results:
287
+ if results['p_value'] > 0.05:
288
+ warnings.append("Results are not statistically significant (p > 0.05)")
289
+ return warnings
290
+
291
+ class RateLimiter:
292
+ def __init__(self, requests_per_minute: int):
293
+ self.requests_per_minute = requests_per_minute
294
+ self.requests: Dict[str, List[datetime]] = {}
295
+ def check_limit(self, user_id: str) -> bool:
296
+ now = datetime.utcnow()
297
+ minute_ago = now - timedelta(minutes=1)
298
+ if user_id not in self.requests:
299
+ self.requests[user_id] = []
300
+ self.requests[user_id] = [req_time for req_time in self.requests[user_id] if req_time > minute_ago]
301
+ if len(self.requests[user_id]) >= self.requests_per_minute:
302
+ return False
303
+ self.requests[user_id].append(now)
304
+ return True