upgraedd commited on
Commit
32129d4
·
verified ·
1 Parent(s): 232528f

Create ADVANCED_CONSCIOUSNESS

Browse files

Cultural analysis framework exploration

Files changed (1) hide show
  1. ADVANCED_CONSCIOUSNESS +2091 -0
ADVANCED_CONSCIOUSNESS ADDED
@@ -0,0 +1,2091 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from dataclasses import dataclass
4
+ from typing import Dict, List, Tuple, Optional, Any
5
+ from enum import Enum
6
+ import math
7
+ from scipy import spatial, stats
8
+ import networkx as nx
9
+ from datetime import datetime
10
+ import json
11
+ from collections import defaultdict
12
+ import warnings
13
+ warnings.filterwarnings('ignore')
14
+
15
+ class ConsciousnessState(Enum):
16
+ DELTA = "Deep Unconscious" # 0.5-4 Hz
17
+ THETA = "Subconscious" # 4-8 Hz
18
+ ALPHA = "Relaxed Awareness" # 8-12 Hz
19
+ BETA = "Active Cognition" # 12-30 Hz
20
+ GAMMA = "Transcendent Unity" # 30-100 Hz
21
+ SCHUMANN = "Earth Resonance" # 7.83 Hz
22
+
23
+ @dataclass
24
+ class QuantumSignature:
25
+ """Qualia state vector for consciousness experience"""
26
+ coherence: float # 0-1, quantum coherence level
27
+ entanglement: float # 0-1, non-local connectivity
28
+ qualia_vector: np.ndarray # 5D experience vector [visual, emotional, cognitive, somatic, spiritual]
29
+ resonance_frequency: float # Hz, characteristic resonance
30
+ decoherence_time: float = 1.0 # Time until quantum state collapse
31
+ nonlocal_correlation: float = 0.5 # EPR-type correlations
32
+
33
+ def calculate_qualia_distance(self, other: 'QuantumSignature') -> float:
34
+ """Calculate distance between qualia experiences using cosine similarity"""
35
+ return spatial.distance.cosine(self.qualia_vector, other.qualia_vector)
36
+
37
+ def entanglement_entropy(self) -> float:
38
+ """Calculate von Neumann entropy of quantum state"""
39
+ return -self.coherence * math.log(self.coherence + 1e-10) if self.coherence > 0 else 0
40
+
41
+ def evolve_state(self, time: float) -> 'QuantumSignature':
42
+ """Evolve quantum state over time with decoherence"""
43
+ decay = math.exp(-time / self.decoherence_time)
44
+ return QuantumSignature(
45
+ coherence=self.coherence * decay,
46
+ entanglement=self.entanglement * decay,
47
+ qualia_vector=self.qualia_vector * decay,
48
+ resonance_frequency=self.resonance_frequency,
49
+ decoherence_time=self.decoherence_time,
50
+ nonlocal_correlation=self.nonlocal_correlation * decay
51
+ )
52
+
53
+ @dataclass
54
+ class NeuralCorrelate:
55
+ """Brain region and frequency correlates with advanced connectivity"""
56
+ primary_regions: List[str] # e.g., ["PFC", "DMN", "Visual Cortex"]
57
+ frequency_band: ConsciousnessState
58
+ cross_hemispheric_sync: float # 0-1
59
+ neuroplasticity_impact: float # 0-1
60
+ default_mode_engagement: float = 0.5 # 0-1, DMN involvement
61
+ salience_network_coupling: float = 0.5 # 0-1, SN connectivity
62
+ thalamocortical_resonance: float = 0.5 # 0-1, thalamic gating
63
+
64
+ @property
65
+ def neural_efficiency(self) -> float:
66
+ """Calculate overall neural processing efficiency"""
67
+ weights = [0.3, 0.25, 0.2, 0.15, 0.1]
68
+ factors = [
69
+ self.cross_hemispheric_sync,
70
+ self.neuroplasticity_impact,
71
+ self.default_mode_engagement,
72
+ self.salience_network_coupling,
73
+ self.thalamocortical_resonance
74
+ ]
75
+ return sum(w * f for w, f in zip(weights, factors))
76
+
77
+ @dataclass
78
+ class ArchetypalStrand:
79
+ """Symbolic DNA strand representing cultural genotype with enhanced metrics"""
80
+ name: str
81
+ symbolic_form: str # e.g., "Lion", "Sunburst"
82
+ temporal_depth: int # years in cultural record
83
+ spatial_distribution: float # 0-1 global prevalence
84
+ preservation_rate: float # 0-1 iconographic fidelity
85
+ quantum_coherence: float # 0-1 symbolic stability
86
+ cultural_penetration: float = 0.5 # 0-1, depth in cultural psyche
87
+ transformative_potential: float = 0.5 # 0-1, capacity for change
88
+ num_variants: int = 1 # Number of cultural variants
89
+
90
+ @property
91
+ def symbolic_strength(self) -> float:
92
+ """Calculate overall archetypal strength with enhanced weighting"""
93
+ weights = [0.20, 0.20, 0.15, 0.15, 0.15, 0.15] # Enhanced weighting
94
+ factors = [
95
+ self.temporal_depth/10000,
96
+ self.spatial_distribution,
97
+ self.preservation_rate,
98
+ self.quantum_coherence,
99
+ self.cultural_penetration,
100
+ self.transformative_potential
101
+ ]
102
+ return min(1.0, sum(w * f for w, f in zip(weights, factors)))
103
+
104
+ @property
105
+ def cultural_resilience(self) -> float:
106
+ """Calculate resilience against cultural erosion"""
107
+ return (self.preservation_rate * 0.4 +
108
+ self.temporal_depth/10000 * 0.3 +
109
+ self.quantum_coherence * 0.3)
110
+
111
+ class ConsciousnessTechnology:
112
+ """Advanced neuro-symbolic interface technology with state tracking"""
113
+
114
+ def __init__(self, name: str, archetype: ArchetypalStrand,
115
+ neural_correlate: NeuralCorrelate, quantum_sig: QuantumSignature):
116
+ self.name = name
117
+ self.archetype = archetype
118
+ self.neural_correlate = neural_correlate
119
+ self.quantum_signature = quantum_sig
120
+ self.activation_history = []
121
+ self.performance_metrics = {
122
+ 'avg_activation_intensity': 0.0,
123
+ 'successful_activations': 0,
124
+ 'neural_efficiency_trend': [],
125
+ 'quantum_coherence_trend': []
126
+ }
127
+
128
+ def activate(self, intensity: float = 1.0, duration: float = 1.0) -> Dict[str, Any]:
129
+ """Advanced activation with duration and performance tracking"""
130
+ # Calculate dynamic effects based on duration and intensity
131
+ neural_boost = math.tanh(intensity * duration)
132
+ quantum_amplification = intensity * (1 - math.exp(-duration))
133
+
134
+ activation = {
135
+ 'timestamp': datetime.now(),
136
+ 'archetype': self.archetype.name,
137
+ 'intensity': intensity,
138
+ 'duration': duration,
139
+ 'neural_state': self.neural_correlate.frequency_band,
140
+ 'neural_efficiency': self.neural_correlate.neural_efficiency * (1 + neural_boost),
141
+ 'quantum_coherence': self.quantum_signature.coherence * (1 + quantum_amplification),
142
+ 'qualia_experience': self.quantum_signature.qualia_vector * intensity,
143
+ 'entanglement_level': self.quantum_signature.entanglement * intensity,
144
+ 'performance_score': self._calculate_performance_score(intensity, duration)
145
+ }
146
+
147
+ self.activation_history.append(activation)
148
+ self._update_performance_metrics(activation)
149
+ return activation
150
+
151
+ def _calculate_performance_score(self, intensity: float, duration: float) -> float:
152
+ """Calculate activation performance score"""
153
+ neural_component = self.neural_correlate.neural_efficiency * intensity
154
+ quantum_component = self.quantum_signature.coherence * duration
155
+ return (neural_component * 0.6 + quantum_component * 0.4)
156
+
157
+ def _update_performance_metrics(self, activation: Dict):
158
+ """Update long-term performance tracking"""
159
+ self.performance_metrics['successful_activations'] += 1
160
+ self.performance_metrics['avg_activation_intensity'] = (
161
+ self.performance_metrics['avg_activation_intensity'] * 0.9 +
162
+ activation['intensity'] * 0.1
163
+ )
164
+ self.performance_metrics['neural_efficiency_trend'].append(
165
+ activation['neural_efficiency']
166
+ )
167
+ self.performance_metrics['quantum_coherence_trend'].append(
168
+ activation['quantum_coherence']
169
+ )
170
+
171
+ def get_performance_report(self) -> Dict[str, Any]:
172
+ """Generate comprehensive performance analysis"""
173
+ trends = self.performance_metrics
174
+ if len(trends['neural_efficiency_trend']) > 1:
175
+ neural_slope = stats.linregress(
176
+ range(len(trends['neural_efficiency_trend'])),
177
+ trends['neural_efficiency_trend']
178
+ ).slope
179
+ quantum_slope = stats.linregress(
180
+ range(len(trends['quantum_coherence_trend'])),
181
+ trends['quantum_coherence_trend']
182
+ ).slope
183
+ else:
184
+ neural_slope = quantum_slope = 0.0
185
+
186
+ return {
187
+ 'total_activations': trends['successful_activations'],
188
+ 'average_intensity': trends['avg_activation_intensity'],
189
+ 'neural_efficiency_trend': neural_slope,
190
+ 'quantum_coherence_trend': quantum_slope,
191
+ 'overall_health': (trends['avg_activation_intensity'] * 0.4 +
192
+ (1 if neural_slope > 0 else 0) * 0.3 +
193
+ (1 if quantum_slope > 0 else 0) * 0.3)
194
+ }
195
+
196
+ class CulturalPhylogenetics:
197
+ """Advanced evolutionary analysis of symbolic DNA with Bayesian methods"""
198
+
199
+ def __init__(self):
200
+ self.cladograms = {}
201
+ self.ancestral_reconstructions = {}
202
+ self.symbolic_traits = [
203
+ "solar_association", "predatory_nature", "sovereignty",
204
+ "transcendence", "protection", "wisdom", "chaos", "creation",
205
+ "fertility", "destruction", "renewal", "guidance"
206
+ ]
207
+ self.trait_correlations = np.eye(len(self.symbolic_traits))
208
+
209
+ def build_cladogram(self, archetypes: List[ArchetypalStrand],
210
+ trait_matrix: np.ndarray,
211
+ method: str = 'bayesian') -> nx.DiGraph:
212
+ """Build evolutionary tree using multiple methods"""
213
+
214
+ if method == 'bayesian':
215
+ return self._bayesian_phylogeny(archetypes, trait_matrix)
216
+ elif method == 'neighbor_joining':
217
+ return self._neighbor_joining(archetypes, trait_matrix)
218
+ else: # minimum_spanning_tree
219
+ return self._minimum_spanning_tree(archetypes, trait_matrix)
220
+
221
+ def _bayesian_phylogeny(self, archetypes: List[ArchetypalStrand],
222
+ trait_matrix: np.ndarray) -> nx.DiGraph:
223
+ """Bayesian phylogenetic inference"""
224
+ G = nx.DiGraph()
225
+ n = len(archetypes)
226
+
227
+ # Calculate Bayesian posterior probabilities for relationships
228
+ for i, arch1 in enumerate(archetypes):
229
+ for j, arch2 in enumerate(archetypes):
230
+ if i != j:
231
+ # Bayesian distance incorporating prior knowledge
232
+ likelihood = math.exp(-spatial.distance.euclidean(
233
+ trait_matrix[i], trait_matrix[j]
234
+ ))
235
+ prior = self._calculate_phylogenetic_prior(arch1, arch2)
236
+ posterior = likelihood * prior
237
+
238
+ G.add_edge(arch1.name, arch2.name,
239
+ weight=1/posterior, # Convert to distance
240
+ probability=posterior)
241
+
242
+ # Find maximum likelihood tree
243
+ mst = nx.minimum_spanning_tree(G, weight='weight')
244
+ self.cladograms[tuple(a.name for a in archetypes)] = mst
245
+ return mst
246
+
247
+ def _neighbor_joining(self, archetypes: List[ArchetypalStrand],
248
+ trait_matrix: np.ndarray) -> nx.DiGraph:
249
+ """Neighbor-joining algorithm for phylogenetic reconstruction"""
250
+ # Simplified implementation
251
+ G = nx.DiGraph()
252
+ distances = spatial.distance.pdist(trait_matrix, metric='euclidean')
253
+ distance_matrix = spatial.distance.squareform(distances)
254
+
255
+ # Build tree using hierarchical clustering
256
+ from scipy.cluster import hierarchy
257
+ Z = hierarchy.linkage(distance_matrix, method='average')
258
+
259
+ # Convert to networkx graph
260
+ # This is a simplified conversion - full NJ would be more complex
261
+ for i in range(len(archetypes)-1):
262
+ G.add_edge(archetypes[int(Z[i,0])].name,
263
+ archetypes[int(Z[i,1])].name,
264
+ weight=Z[i,2])
265
+
266
+ self.cladograms[tuple(a.name for a in archetypes)] = G
267
+ return G
268
+
269
+ def _minimum_spanning_tree(self, archetypes: List[ArchetypalStrand],
270
+ trait_matrix: np.ndarray) -> nx.DiGraph:
271
+ """Traditional minimum spanning tree approach"""
272
+ G = nx.Graph()
273
+
274
+ for i, arch1 in enumerate(archetypes):
275
+ for j, arch2 in enumerate(archetypes):
276
+ if i != j:
277
+ distance = spatial.distance.euclidean(
278
+ trait_matrix[i], trait_matrix[j]
279
+ )
280
+ G.add_edge(arch1.name, arch2.name, weight=distance)
281
+
282
+ mst = nx.minimum_spanning_tree(G)
283
+ self.cladograms[tuple(a.name for a in archetypes)] = mst
284
+ return mst
285
+
286
+ def _calculate_phylogenetic_prior(self, arch1: ArchetypalStrand,
287
+ arch2: ArchetypalStrand) -> float:
288
+ """Calculate Bayesian prior based on temporal and spatial overlap"""
289
+ temporal_overlap = 1 - abs(arch1.temporal_depth - arch2.temporal_depth) / 10000
290
+ spatial_similarity = 1 - abs(arch1.spatial_distribution - arch2.spatial_distribution)
291
+ return (temporal_overlap * 0.6 + spatial_similarity * 0.4)
292
+
293
+ def find_common_ancestor(self, archetype1: str, archetype2: str,
294
+ method: str = 'lca') -> Optional[str]:
295
+ """Find most recent common ancestor using multiple methods"""
296
+ for cladogram in self.cladograms.values():
297
+ if archetype1 in cladogram and archetype2 in cladogram:
298
+ try:
299
+ if method == 'lca':
300
+ # Use networkx's LCA for rooted trees
301
+ if hasattr(nx, 'lowest_common_ancestor'):
302
+ return nx.lowest_common_ancestor(cladogram, archetype1, archetype2)
303
+ else:
304
+ # Fallback method
305
+ path1 = nx.shortest_path(cladogram, source=list(cladogram.nodes())[0], target=archetype1)
306
+ path2 = nx.shortest_path(cladogram, source=list(cladogram.nodes())[0], target=archetype2)
307
+ common = [n for n in path1 if n in path2]
308
+ return common[-1] if common else None
309
+ else:
310
+ # Shortest path midpoint
311
+ path = nx.shortest_path(cladogram, archetype1, archetype2)
312
+ return path[len(path)//2] if len(path) > 2 else path[0]
313
+ except (nx.NetworkXNoPath, nx.NodeNotFound):
314
+ continue
315
+ return None
316
+
317
+ def calculate_evolutionary_rate(self, archetype: str) -> float:
318
+ """Calculate evolutionary rate of an archetype"""
319
+ # Simplified evolutionary rate calculation
320
+ for cladogram in self.cladograms.values():
321
+ if archetype in cladogram:
322
+ # Sum of branch lengths from root
323
+ try:
324
+ root = [n for n in cladogram.nodes() if cladogram.in_degree(n) == 0][0]
325
+ path = nx.shortest_path(cladogram, root, archetype)
326
+ total_length = sum(cladogram[u][v]['weight'] for u, v in zip(path[:-1], path[1:]))
327
+ return total_length / len(path) if path else 0.0
328
+ except (IndexError, nx.NetworkXNoPath):
329
+ continue
330
+ return 0.0
331
+
332
+ class GeospatialArchetypalMapper:
333
+ """Advanced GIS-based symbolic distribution analysis with temporal dynamics"""
334
+
335
+ def __init__(self):
336
+ self.archetype_distributions = {}
337
+ self.mutation_hotspots = []
338
+ self.diffusion_models = {}
339
+ self.spatial_correlations = {}
340
+
341
+ def add_archetype_distribution(self, archetype: str,
342
+ coordinates: List[Tuple[float, float]],
343
+ intensity: List[float],
344
+ epoch: str,
345
+ uncertainty: List[float] = None):
346
+ """Add spatial data with uncertainty estimates"""
347
+ key = f"{archetype}_{epoch}"
348
+
349
+ if uncertainty is None:
350
+ uncertainty = [0.1] * len(coordinates) # Default uncertainty
351
+
352
+ self.archetype_distributions[key] = {
353
+ 'coordinates': coordinates,
354
+ 'intensity': intensity,
355
+ 'uncertainty': uncertainty,
356
+ 'epoch': epoch,
357
+ 'centroid': self._calculate_centroid(coordinates, intensity),
358
+ 'spread': self._calculate_spatial_spread(coordinates, intensity),
359
+ 'density': self._calculate_point_density(coordinates, intensity)
360
+ }
361
+
362
+ self._update_diffusion_model(archetype, coordinates, intensity, epoch)
363
+
364
+ def _calculate_centroid(self, coords: List[Tuple], intensities: List[float]) -> Tuple[float, float]:
365
+ """Calculate intensity-weighted centroid with robustness"""
366
+ if not coords:
367
+ return (0, 0)
368
+ try:
369
+ weighted_lat = sum(c[0] * i for c, i in zip(coords, intensities)) / sum(intensities)
370
+ weighted_lon = sum(c[1] * i for c, i in zip(coords, intensities)) / sum(intensities)
371
+ return (weighted_lat, weighted_lon)
372
+ except ZeroDivisionError:
373
+ return (np.mean([c[0] for c in coords]), np.mean([c[1] for c in coords]))
374
+
375
+ def _calculate_spatial_spread(self, coords: List[Tuple], intensities: List[float]) -> float:
376
+ """Calculate spatial spread (standard distance)"""
377
+ if len(coords) < 2:
378
+ return 0.0
379
+ centroid = self._calculate_centroid(coords, intensities)
380
+ distances = [math.sqrt((c[0]-centroid[0])**2 + (c[1]-centroid[1])**2) for c in coords]
381
+ return np.std(distances)
382
+
383
+ def _calculate_point_density(self, coords: List[Tuple], intensities: List[float]) -> float:
384
+ """Calculate point density metric"""
385
+ if not coords:
386
+ return 0.0
387
+ spread = self._calculate_spatial_spread(coords, intensities)
388
+ total_intensity = sum(intensities)
389
+ return total_intensity / (spread + 1e-10) # Avoid division by zero
390
+
391
+ def _update_diffusion_model(self, archetype: str, coords: List[Tuple],
392
+ intensities: List[float], epoch: str):
393
+ """Update diffusion model for archetype spread"""
394
+ if archetype not in self.diffusion_models:
395
+ self.diffusion_models[archetype] = {}
396
+
397
+ centroid = self._calculate_centroid(coords, intensities)
398
+ spread = self._calculate_spatial_spread(coords, intensities)
399
+
400
+ self.diffusion_models[archetype][epoch] = {
401
+ 'centroid': centroid,
402
+ 'spread': spread,
403
+ 'intensity_sum': sum(intensities),
404
+ 'point_count': len(coords)
405
+ }
406
+
407
+ def detect_mutation_hotspots(self, threshold: float = 0.8,
408
+ method: str = 'variance'):
409
+ """Advanced hotspot detection using multiple methods"""
410
+ self.mutation_hotspots.clear()
411
+
412
+ for key, data in self.archetype_distributions.items():
413
+ if method == 'variance':
414
+ score = np.var(data['intensity'])
415
+ elif method == 'spatial_autocorrelation':
416
+ score = self._calculate_morans_i(data['coordinates'], data['intensity'])
417
+ elif method == 'getis_ord':
418
+ score = self._calculate_getis_ord(data['coordinates'], data['intensity'])
419
+ else:
420
+ score = np.var(data['intensity'])
421
+
422
+ if score > threshold:
423
+ self.mutation_hotspots.append({
424
+ 'location': key,
425
+ 'score': score,
426
+ 'method': method,
427
+ 'epoch': data['epoch'],
428
+ 'centroid': data['centroid'],
429
+ 'significance': self._calculate_hotspot_significance(score, threshold)
430
+ })
431
+
432
+ # Sort by significance
433
+ self.mutation_hotspots.sort(key=lambda x: x['significance'], reverse=True)
434
+
435
+ def _calculate_morans_i(self, coords: List[Tuple], intensities: List[float]) -> float:
436
+ """Calculate Moran's I for spatial autocorrelation (simplified)"""
437
+ if len(coords) < 2:
438
+ return 0.0
439
+ # Simplified implementation
440
+ centroid = self._calculate_centroid(coords, intensities)
441
+ deviations = [i - np.mean(intensities) for i in intensities]
442
+ spatial_lag = sum(d1 * d2 for d1 in deviations for d2 in deviations) / len(deviations)**2
443
+ return abs(spatial_lag) # Simplified
444
+
445
+ def _calculate_getis_ord(self, coords: List[Tuple], intensities: List[float]) -> float:
446
+ """Calculate Getis-Ord Gi* statistic (simplified)"""
447
+ if len(coords) < 2:
448
+ return 0.0
449
+ # Simplified hot spot detection
450
+ mean_intensity = np.mean(intensities)
451
+ std_intensity = np.std(intensities)
452
+ if std_intensity == 0:
453
+ return 0.0
454
+ return max(0, (max(intensities) - mean_intensity) / std_intensity)
455
+
456
+ def _calculate_hotspot_significance(self, score: float, threshold: float) -> float:
457
+ """Calculate statistical significance of hotspot"""
458
+ return min(1.0, (score - threshold) / (1 - threshold)) if score > threshold else 0.0
459
+
460
+ def predict_archetype_spread(self, archetype: str, future_epochs: int = 5) -> List[Dict]:
461
+ """Predict future spatial distribution"""
462
+ if archetype not in self.diffusion_models:
463
+ return []
464
+
465
+ epochs = sorted(self.diffusion_models[archetype].keys())
466
+ if len(epochs) < 2:
467
+ return []
468
+
469
+ # Simple linear extrapolation of centroid movement and spread
470
+ recent_data = [self.diffusion_models[archetype][e] for e in epochs[-2:]]
471
+ centroid_drift = (
472
+ recent_data[1]['centroid'][0] - recent_data[0]['centroid'][0],
473
+ recent_data[1]['centroid'][1] - recent_data[0]['centroid'][1]
474
+ )
475
+ spread_growth = recent_data[1]['spread'] - recent_data[0]['spread']
476
+
477
+ predictions = []
478
+ current_centroid = recent_data[1]['centroid']
479
+ current_spread = recent_data[1]['spread']
480
+
481
+ for i in range(1, future_epochs + 1):
482
+ predicted_centroid = (
483
+ current_centroid[0] + centroid_drift[0] * i,
484
+ current_centroid[1] + centroid_drift[1] * i
485
+ )
486
+ predicted_spread = current_spread + spread_growth * i
487
+
488
+ predictions.append({
489
+ 'epoch': f'future_{i}',
490
+ 'predicted_centroid': predicted_centroid,
491
+ 'predicted_spread': predicted_spread,
492
+ 'confidence': max(0, 1.0 - i * 0.2) # Decreasing confidence
493
+ })
494
+
495
+ return predictions
496
+
497
+ class ArchetypalEntropyIndex:
498
+ """Advanced measurement of symbolic degradation and mutation rates"""
499
+
500
+ def __init__(self):
501
+ self.entropy_history = {}
502
+ self.complexity_metrics = {}
503
+ self.stability_thresholds = {
504
+ 'low_entropy': 0.3,
505
+ 'medium_entropy': 0.6,
506
+ 'high_entropy': 0.8
507
+ }
508
+
509
+ def calculate_entropy(self, archetype: ArchetypalStrand,
510
+ historical_forms: List[str],
511
+ meaning_shifts: List[float],
512
+ contextual_factors: Dict[str, float] = None) -> Dict[str, float]:
513
+ """Advanced entropy calculation with multiple dimensions"""
514
+
515
+ if contextual_factors is None:
516
+ contextual_factors = {
517
+ 'cultural_turbulence': 0.5,
518
+ 'technological_disruption': 0.5,
519
+ 'social_volatility': 0.5
520
+ }
521
+
522
+ # Form entropy (morphological changes with complexity weighting)
523
+ if len(historical_forms) > 1:
524
+ form_complexity = self._calculate_form_complexity(historical_forms)
525
+ form_changes = len(set(historical_forms)) / len(historical_forms)
526
+ form_entropy = form_changes * (1 + form_complexity * 0.5)
527
+ else:
528
+ form_entropy = 0
529
+ form_complexity = 0
530
+
531
+ # Meaning entropy (semantic drift with contextual sensitivity)
532
+ meaning_entropy = np.std(meaning_shifts) if meaning_shifts else 0
533
+ contextual_sensitivity = sum(contextual_factors.values()) / len(contextual_factors)
534
+ meaning_entropy_adj = meaning_entropy * (1 + contextual_sensitivity * 0.3)
535
+
536
+ # Structural entropy (internal consistency)
537
+ structural_entropy = self._calculate_structural_entropy(archetype, historical_forms)
538
+
539
+ # Combined entropy scores
540
+ total_entropy = (form_entropy * 0.4 +
541
+ meaning_entropy_adj * 0.4 +
542
+ structural_entropy * 0.2)
543
+
544
+ # Stability classification
545
+ stability_level = self._classify_stability(total_entropy)
546
+
547
+ result = {
548
+ 'total_entropy': total_entropy,
549
+ 'form_entropy': form_entropy,
550
+ 'meaning_entropy': meaning_entropy_adj,
551
+ 'structural_entropy': structural_entropy,
552
+ 'form_complexity': form_complexity,
553
+ 'stability_level': stability_level,
554
+ 'mutation_risk': self._calculate_mutation_risk(total_entropy, contextual_factors),
555
+ 'resilience_score': 1 - total_entropy
556
+ }
557
+
558
+ self.entropy_history[archetype.name] = {
559
+ **result,
560
+ 'contextual_factors': contextual_factors,
561
+ 'last_updated': datetime.now(),
562
+ 'historical_trend': self._update_historical_trend(archetype.name, total_entropy)
563
+ }
564
+
565
+ self.complexity_metrics[archetype.name] = form_complexity
566
+
567
+ return result
568
+
569
+ def _calculate_form_complexity(self, forms: List[str]) -> float:
570
+ """Calculate complexity of form variations"""
571
+ if not forms:
572
+ return 0.0
573
+
574
+ # Simple complexity metric based on variation and length
575
+ avg_length = np.mean([len(f) for f in forms])
576
+ variation_ratio = len(set(forms)) / len(forms)
577
+
578
+ return min(1.0, (avg_length / 100 * 0.3 + variation_ratio * 0.7))
579
+
580
+ def _calculate_structural_entropy(self, archetype: ArchetypalStrand,
581
+ forms: List[str]) -> float:
582
+ """Calculate structural entropy based on internal consistency"""
583
+ # Measure how well the archetype maintains structural integrity
584
+ coherence_penalty = 1 - archetype.quantum_coherence
585
+ preservation_penalty = 1 - archetype.preservation_rate
586
+
587
+ return (coherence_penalty * 0.6 + preservation_penalty * 0.4)
588
+
589
+ def _classify_stability(self, entropy: float) -> str:
590
+ """Classify archetype stability level"""
591
+ if entropy <= self.stability_thresholds['low_entropy']:
592
+ return 'high_stability'
593
+ elif entropy <= self.stability_thresholds['medium_entropy']:
594
+ return 'medium_stability'
595
+ elif entropy <= self.stability_thresholds['high_entropy']:
596
+ return 'low_stability'
597
+ else:
598
+ return 'critical_instability'
599
+
600
+ def _calculate_mutation_risk(self, entropy: float,
601
+ contextual_factors: Dict[str, float]) -> float:
602
+ """Calculate risk of significant mutation"""
603
+ base_risk = entropy
604
+ contextual_risk = sum(contextual_factors.values()) / len(contextual_factors)
605
+
606
+ return min(1.0, base_risk * 0.7 + contextual_risk * 0.3)
607
+
608
+ def _update_historical_trend(self, archetype_name: str, current_entropy: float) -> List[float]:
609
+ """Update historical entropy trend"""
610
+ if archetype_name not in self.entropy_history:
611
+ return [current_entropy]
612
+
613
+ current_trend = self.entropy_history[archetype_name].get('historical_trend', [])
614
+ current_trend.append(current_entropy)
615
+
616
+ # Keep only last 10 readings
617
+ return current_trend[-10:]
618
+
619
+ def get_high_entropy_archetypes(self, threshold: float = 0.7) -> List[Dict]:
620
+ """Get archetypes with high mutation rates with detailed analysis"""
621
+ high_entropy = []
622
+
623
+ for name, data in self.entropy_history.items():
624
+ if data['total_entropy'] > threshold:
625
+ high_entropy.append({
626
+ 'archetype': name,
627
+ 'total_entropy': data['total_entropy'],
628
+ 'stability_level': data['stability_level'],
629
+ 'mutation_risk': data['mutation_risk'],
630
+ 'resilience_score': data['resilience_score'],
631
+ 'trend_direction': self._calculate_trend_direction(data['historical_trend'])
632
+ })
633
+
634
+ return sorted(high_entropy, key=lambda x: x['mutation_risk'], reverse=True)
635
+
636
+ def _calculate_trend_direction(self, trend: List[float]) -> str:
637
+ """Calculate direction of entropy trend"""
638
+ if len(trend) < 2:
639
+ return 'stable'
640
+
641
+ slope = stats.linregress(range(len(trend)), trend).slope
642
+
643
+ if slope > 0.01:
644
+ return 'increasing'
645
+ elif slope < -0.01:
646
+ return 'decreasing'
647
+ else:
648
+ return 'stable'
649
+
650
+ def get_entropy_network(self) -> nx.Graph:
651
+ """Build network of archetypes based on entropy correlations"""
652
+ G = nx.Graph()
653
+
654
+ archetype_names = list(self.entropy_history.keys())
655
+
656
+ for i, arch1 in enumerate(archetype_names):
657
+ for j, arch2 in enumerate(archetype_names):
658
+ if i < j: # Avoid duplicate pairs
659
+ # Calculate entropy correlation
660
+ trend1 = self.entropy_history[arch1].get('historical_trend', [0])
661
+ trend2 = self.entropy_history[arch2].get('historical_trend', [0])
662
+
663
+ # Pad with zeros if different lengths
664
+ max_len = max(len(trend1), len(trend2))
665
+ trend1_padded = trend1 + [0] * (max_len - len(trend1))
666
+ trend2_padded = trend2 + [0] * (max_len - len(trend2))
667
+
668
+ if len(trend1_padded) > 1:
669
+ correlation = np.corrcoef(trend1_padded, trend2_padded)[0,1]
670
+ if not np.isnan(correlation) and abs(correlation) > 0.3:
671
+ G.add_edge(arch1, arch2,
672
+ weight=abs(correlation),
673
+ correlation=correlation)
674
+
675
+ return G
676
+
677
+ class CrossCulturalResonanceMatrix:
678
+ """Advanced comparison of archetypal strength across civilizations"""
679
+
680
+ def __init__(self):
681
+ self.civilization_data = {}
682
+ self.resonance_matrix = {}
683
+ self.cultural_clusters = {}
684
+ self.resonance_network = nx.Graph()
685
+
686
+ def add_civilization_archetype(self, civilization: str,
687
+ archetype: str,
688
+ strength: float,
689
+ neural_impact: float,
690
+ cultural_context: Dict[str, float] = None):
691
+ """Add archetype data with cultural context"""
692
+ if civilization not in self.civilization_data:
693
+ self.civilization_data[civilization] = {}
694
+
695
+ if cultural_context is None:
696
+ cultural_context = {
697
+ 'technological_level': 0.5,
698
+ 'spiritual_emphasis': 0.5,
699
+ 'individualism': 0.5,
700
+ 'ecological_connection': 0.5
701
+ }
702
+
703
+ self.civilization_data[civilization][archetype] = {
704
+ 'strength': strength,
705
+ 'neural_impact': neural_impact,
706
+ 'cultural_context': cultural_context,
707
+ 'resonance_potential': self._calculate_resonance_potential(strength, neural_impact, cultural_context)
708
+ }
709
+
710
+ def _calculate_resonance_potential(self, strength: float,
711
+ neural_impact: float,
712
+ cultural_context: Dict[str, float]) -> float:
713
+ """Calculate overall resonance potential"""
714
+ base_potential = (strength * 0.5 + neural_impact * 0.5)
715
+ cultural_modifier = sum(cultural_context.values()) / len(cultural_context)
716
+
717
+ return base_potential * (0.7 + cultural_modifier * 0.3)
718
+
719
+ def calculate_cross_resonance(self, arch1: str, arch2: str,
720
+ method: str = 'pearson') -> Dict[str, float]:
721
+ """Calculate resonance between archetypes using multiple methods"""
722
+ strengths_1 = []
723
+ strengths_2 = []
724
+ neural_impacts_1 = []
725
+ neural_impacts_2 = []
726
+
727
+ for civ_data in self.civilization_data.values():
728
+ if arch1 in civ_data and arch2 in civ_data:
729
+ strengths_1.append(civ_data[arch1]['strength'])
730
+ strengths_2.append(civ_data[arch2]['strength'])
731
+ neural_impacts_1.append(civ_data[arch1]['neural_impact'])
732
+ neural_impacts_2.append(civ_data[arch2]['neural_impact'])
733
+
734
+ results = {}
735
+
736
+ if len(strengths_1) > 1:
737
+ if method == 'pearson':
738
+ strength_resonance = np.corrcoef(strengths_1, strengths_2)[0,1]
739
+ neural_resonance = np.corrcoef(neural_impacts_1, neural_impacts_2)[0,1]
740
+ elif method == 'spearman':
741
+ strength_resonance = stats.spearmanr(strengths_1, strengths_2)[0]
742
+ neural_resonance = stats.spearmanr(neural_impacts_1, neural_impacts_2)[0]
743
+ else: # cosine similarity
744
+ strength_resonance = 1 - spatial.distance.cosine(strengths_1, strengths_2)
745
+ neural_resonance = 1 - spatial.distance.cosine(neural_impacts_1, neural_impacts_2)
746
+
747
+ results = {
748
+ 'strength_resonance': max(0, strength_resonance) if not np.isnan(strength_resonance) else 0,
749
+ 'neural_resonance': max(0, neural_resonance) if not np.isnan(neural_resonance) else 0,
750
+ 'overall_resonance': (max(0, strength_resonance) * 0.6 + max(0, neural_resonance) * 0.4)
751
+ }
752
+ else:
753
+ results = {
754
+ 'strength_resonance': 0.0,
755
+ 'neural_resonance': 0.0,
756
+ 'overall_resonance': 0.0
757
+ }
758
+
759
+ return results
760
+
761
+ def build_resonance_network(self, threshold: float = 0.3) -> nx.Graph:
762
+ """Build advanced resonance network with community detection"""
763
+ G = nx.Graph()
764
+ archetypes = set()
765
+
766
+ # Get all unique archetypes
767
+ for civ_data in self.civilization_data.values():
768
+ archetypes.update(civ_data.keys())
769
+
770
+ # Calculate resonances and build network
771
+ for arch1 in archetypes:
772
+ for arch2 in archetypes:
773
+ if arch1 != arch2:
774
+ resonance_data = self.calculate_cross_resonance(arch1, arch2)
775
+ overall_resonance = resonance_data['overall_resonance']
776
+
777
+ if overall_resonance > threshold:
778
+ G.add_edge(arch1, arch2,
779
+ weight=overall_resonance,
780
+ strength_resonance=resonance_data['strength_resonance'],
781
+ neural_resonance=resonance_data['neural_resonance'])
782
+
783
+ # Detect communities in the resonance network
784
+ if len(G.nodes()) > 0:
785
+ try:
786
+ communities = nx.algorithms.community.greedy_modularity_communities(G)
787
+ for i, community in enumerate(communities):
788
+ for node in community:
789
+ G.nodes[node]['community'] = i
790
+ self.cultural_clusters = {i: list(community) for i, community in enumerate(communities)}
791
+ except:
792
+ # Fallback if community detection fails
793
+ for node in G.nodes():
794
+ G.nodes[node]['community'] = 0
795
+
796
+ self.resonance_network = G
797
+ return G
798
+
799
+ def find_cultural_clusters(self) -> Dict[int, List[str]]:
800
+ """Identify clusters of culturally resonant archetypes"""
801
+ if not self.cultural_clusters:
802
+ self.build_resonance_network()
803
+ return self.cultural_clusters
804
+
805
+ def calculate_civilization_similarity(self, civ1: str, civ2: str) -> float:
806
+ """Calculate similarity between two civilizations"""
807
+ if civ1 not in self.civilization_data or civ2 not in self.civilization_data:
808
+ return 0.0
809
+
810
+ common_archetypes = set(self.civilization_data[civ1].keys()) & set(self.civilization_data[civ2].keys())
811
+ if not common_archetypes:
812
+ return 0.0
813
+
814
+ similarities = []
815
+ for arch in common_archetypes:
816
+ strength_sim = 1 - abs(self.civilization_data[civ1][arch]['strength'] -
817
+ self.civilization_data[civ2][arch]['strength'])
818
+ neural_sim = 1 - abs(self.civilization_data[civ1][arch]['neural_impact'] -
819
+ self.civilization_data[civ2][arch]['neural_impact'])
820
+ similarities.append((strength_sim + neural_sim) / 2)
821
+
822
+ return np.mean(similarities) if similarities else 0.0
823
+
824
+ def get_universal_archetypes(self, threshold: float = 0.7) -> List[str]:
825
+ """Find archetypes present in most civilizations"""
826
+ civ_count = len(self.civilization_data)
827
+ if civ_count == 0:
828
+ return []
829
+
830
+ archetype_frequency = defaultdict(int)
831
+ for civ_data in self.civilization_data.values():
832
+ for arch in civ_data.keys():
833
+ archetype_frequency[arch] += 1
834
+
835
+ universal = [arch for arch, count in archetype_frequency.items()
836
+ if count / civ_count >= threshold]
837
+ return sorted(universal, key=lambda x: archetype_frequency[x], reverse=True)
838
+
839
+ class SymbolicMutationEngine:
840
+ """Advanced prediction of archetype evolution under cultural pressure"""
841
+
842
+ def __init__(self):
843
+ self.transformation_rules = {
844
+ 'weapon': ['tool', 'symbol', 'concept', 'algorithm'],
845
+ 'physical': ['digital', 'virtual', 'neural', 'quantum'],
846
+ 'individual': ['networked', 'collective', 'distributed', 'holographic'],
847
+ 'concrete': ['abstract', 'algorithmic', 'quantum', 'consciousness_based'],
848
+ 'hierarchical': ['networked', 'decentralized', 'rhizomatic', 'holonic']
849
+ }
850
+
851
+ self.pressure_vectors = {
852
+ 'digitization': {
853
+ 'intensity_range': (0.3, 0.9),
854
+ 'preferred_transformations': ['physical->digital', 'concrete->algorithmic'],
855
+ 'resistance_factors': ['cultural_traditionalism', 'technological_aversion']
856
+ },
857
+ 'ecological_crisis': {
858
+ 'intensity_range': (0.5, 1.0),
859
+ 'preferred_transformations': ['individual->collective', 'weapon->tool'],
860
+ 'resistance_factors': ['individualism', 'consumerism']
861
+ },
862
+ 'quantum_awakening': {
863
+ 'intensity_range': (0.2, 0.8),
864
+ 'preferred_transformations': ['concrete->quantum', 'physical->neural'],
865
+ 'resistance_factors': ['materialism', 'reductionism']
866
+ },
867
+ 'neural_enhancement': {
868
+ 'intensity_range': (0.4, 0.9),
869
+ 'preferred_transformations': ['individual->networked', 'concrete->consciousness_based'],
870
+ 'resistance_factors': ['biological_conservatism', 'ethical_concerns']
871
+ }
872
+ }
873
+
874
+ self.archetype_transformations = self._initialize_transformation_library()
875
+
876
+ def _initialize_transformation_library(self) -> Dict[str, Dict[str, List[str]]]:
877
+ """Initialize comprehensive transformation library"""
878
+ return {
879
+ 'spear': {
880
+ 'physical->digital': ['laser_designator', 'cyber_spear', 'data_lance'],
881
+ 'weapon->tool': ['guided_implement', 'precision_instrument', 'surgical_tool'],
882
+ 'individual->networked': ['swarm_coordination', 'distributed_attack', 'coordinated_defense'],
883
+ 'hierarchical->decentralized': ['peer_to_peer_defense', 'distributed_security']
884
+ },
885
+ 'lion': {
886
+ 'physical->digital': ['data_guardian', 'cyber_protector', 'algorithmic_sovereignty'],
887
+ 'concrete->abstract': ['sovereignty_algorithm', 'leadership_principle', 'authority_pattern'],
888
+ 'individual->collective': ['pride_consciousness', 'collective_strength', 'community_protection']
889
+ },
890
+ 'sun': {
891
+ 'concrete->quantum': ['consciousness_illumination', 'quantum_awareness', 'enlightenment_field'],
892
+ 'physical->neural': ['neural_awakening', 'cognitive_illumination', 'mind_light'],
893
+ 'individual->networked': ['collective_consciousness', 'global_awareness', 'networked_insight']
894
+ },
895
+ 'serpent': {
896
+ 'physical->digital': ['data_worm', 'algorithmic_subversion', 'cyber_undermining'],
897
+ 'weapon->tool': ['transformative_agent', 'healing_serpent', 'regeneration_symbol'],
898
+ 'concrete->quantum': ['quantum_chaos', 'nonlocal_influence', 'entanglement_manifestation']
899
+ }
900
+ }
901
+
902
+ def predict_mutation(self, current_archetype: str,
903
+ pressure_vector: str,
904
+ intensity: float = 0.5,
905
+ cultural_context: Dict[str, float] = None) -> List[Dict[str, Any]]:
906
+ """Advanced mutation prediction with cultural context"""
907
+
908
+ if cultural_context is None:
909
+ cultural_context = {
910
+ 'technological_acceptance': 0.5,
911
+ 'spiritual_openness': 0.5,
912
+ 'cultural_fluidity': 0.5,
913
+ 'innovation_capacity': 0.5
914
+ }
915
+
916
+ if pressure_vector not in self.pressure_vectors:
917
+ return []
918
+
919
+ pressure_config = self.pressure_vectors[pressure_vector]
920
+ normalized_intensity = self._normalize_intensity(intensity, pressure_config['intensity_range'])
921
+
922
+ # Calculate transformation probabilities
923
+ transformations = []
924
+ for rule in pressure_config['preferred_transformations']:
925
+ possible_mutations = self._apply_transformation(current_archetype, rule)
926
+
927
+ for mutation in possible_mutations:
928
+ confidence = self._calculate_mutation_confidence(
929
+ mutation, normalized_intensity, cultural_context,
930
+ pressure_config['resistance_factors']
931
+ )
932
+
933
+ if confidence > 0.2: # Minimum confidence threshold
934
+ transformations.append({
935
+ 'original_archetype': current_archetype,
936
+ 'mutated_form': mutation,
937
+ 'transformation_rule': rule,
938
+ 'pressure_vector': pressure_vector,
939
+ 'intensity': normalized_intensity,
940
+ 'confidence': confidence,
941
+ 'timeframe': self._estimate_timeframe(confidence, normalized_intensity),
942
+ 'cultural_compatibility': self._assess_cultural_compatibility(mutation, cultural_context),
943
+ 'potential_impact': self._estimate_impact(mutation, current_archetype)
944
+ })
945
+
946
+ # Sort by confidence and impact
947
+ return sorted(transformations,
948
+ key=lambda x: x['confidence'] * x['potential_impact'],
949
+ reverse=True)
950
+
951
+ def _normalize_intensity(self, intensity: float, intensity_range: Tuple[float, float]) -> float:
952
+ """Normalize intensity within pressure-specific range"""
953
+ min_intensity, max_intensity = intensity_range
954
+ return min(1.0, max(0.0, (intensity - min_intensity) / (max_intensity - min_intensity)))
955
+
956
+ def _apply_transformation(self, archetype: str, rule: str) -> List[str]:
957
+ """Apply transformation rule to archetype"""
958
+ if '->' not in rule:
959
+ return []
960
+
961
+ return self.archetype_transformations.get(archetype, {}).get(rule, [])
962
+
963
+ def _calculate_mutation_confidence(self, mutation: str,
964
+ intensity: float,
965
+ cultural_context: Dict[str, float],
966
+ resistance_factors: List[str]) -> float:
967
+ """Calculate confidence in mutation prediction"""
968
+ base_confidence = 0.3 + intensity * 0.4
969
+
970
+ # Cultural compatibility adjustment
971
+ cultural_compatibility = sum(cultural_context.values()) / len(cultural_context)
972
+ cultural_boost = cultural_compatibility * 0.3
973
+
974
+ # Resistance penalty
975
+ resistance_penalty = sum(1 - cultural_context.get(factor, 0.5)
976
+ for factor in resistance_factors) / len(resistance_factors) * 0.2
977
+
978
+ final_confidence = base_confidence + cultural_boost - resistance_penalty
979
+ return min(1.0, max(0.0, final_confidence))
980
+
981
+ def _estimate_timeframe(self, confidence: float, intensity: float) -> str:
982
+ """Estimate mutation timeframe"""
983
+ timeframe_score = confidence * intensity
984
+
985
+ if timeframe_score > 0.7:
986
+ return 'immediate (1-5 years)'
987
+ elif timeframe_score > 0.5:
988
+ return 'near_future (5-15 years)'
989
+ elif timeframe_score > 0.3:
990
+ return 'mid_future (15-30 years)'
991
+ else:
992
+ return 'distant_future (30+ years)'
993
+
994
+ def _assess_cultural_compatibility(self, mutation: str,
995
+ cultural_context: Dict[str, float]) -> float:
996
+ """Assess cultural compatibility of mutation"""
997
+ # Simple assessment based on mutation characteristics
998
+ tech_keywords = ['digital', 'cyber', 'algorithm', 'data', 'network']
999
+ spirit_keywords = ['consciousness', 'awareness', 'enlightenment', 'quantum']
1000
+ innovation_keywords = ['transformative', 'novel', 'emerging', 'advanced']
1001
+
1002
+ tech_score = any(keyword in mutation.lower() for keyword in tech_keywords)
1003
+ spirit_score = any(keyword in mutation.lower() for keyword in spirit_keywords)
1004
+ innovation_score = any(keyword in mutation.lower() for keyword in innovation_keywords)
1005
+
1006
+ scores = []
1007
+ if tech_score:
1008
+ scores.append(cultural_context.get('technological_acceptance', 0.5))
1009
+ if spirit_score:
1010
+ scores.append(cultural_context.get('spiritual_openness', 0.5))
1011
+ if innovation_score:
1012
+ scores.append(cultural_context.get('innovation_capacity', 0.5))
1013
+
1014
+ return np.mean(scores) if scores else 0.5
1015
+
1016
+ def _estimate_impact(self, mutation: str, original: str) -> float:
1017
+ """Estimate potential impact of mutation"""
1018
+ # Simple impact estimation based on transformation degree
1019
+ transformation_degree = self._calculate_transformation_degree(mutation, original)
1020
+ novelty_factor = len(mutation) / max(len(original), 1) # Simple novelty proxy
1021
+
1022
+ return min(1.0, transformation_degree * 0.7 + novelty_factor * 0.3)
1023
+
1024
+ def _calculate_transformation_degree(self, mutation: str, original: str) -> float:
1025
+ """Calculate degree of transformation from original"""
1026
+ # Simple string-based similarity (could be enhanced with semantic analysis)
1027
+ if original.lower() in mutation.lower():
1028
+ return 0.3 # Low transformation
1029
+ else:
1030
+ return 0.8 # High transformation
1031
+
1032
+ def generate_mutation_scenarios(self, archetype: str,
1033
+ time_horizon: str = 'mid_future') -> Dict[str, Any]:
1034
+ """Generate comprehensive mutation scenarios"""
1035
+ scenarios = {}
1036
+
1037
+ for pressure_vector in self.pressure_vectors.keys():
1038
+ mutations = self.predict_mutation(
1039
+ archetype, pressure_vector, intensity=0.7,
1040
+ cultural_context={
1041
+ 'technological_acceptance': 0.7,
1042
+ 'spiritual_openness': 0.6,
1043
+ 'cultural_fluidity': 0.8,
1044
+ 'innovation_capacity': 0.7
1045
+ }
1046
+ )
1047
+
1048
+ # Filter by timeframe
1049
+ timeframe_mutations = [m for m in mutations if m['timeframe'] == time_horizon]
1050
+
1051
+ if timeframe_mutations:
1052
+ scenarios[pressure_vector] = {
1053
+ 'most_likely': max(timeframe_mutations, key=lambda x: x['confidence']),
1054
+ 'all_possibilities': timeframe_mutations,
1055
+ 'average_confidence': np.mean([m['confidence'] for m in timeframe_mutations]),
1056
+ 'transformation_potential': np.mean([m['potential_impact'] for m in timeframe_mutations])
1057
+ }
1058
+
1059
+ return scenarios
1060
+
1061
+ class ArchetypalEntanglement:
1062
+ """Quantum entanglement analysis between archetypes"""
1063
+
1064
+ def __init__(self):
1065
+ self.entanglement_network = nx.Graph()
1066
+ self.quantum_correlations = {}
1067
+ self.nonlocal_connections = {}
1068
+
1069
+ def calculate_quantum_entanglement(self, arch1: ArchetypalStrand,
1070
+ arch2: ArchetypalStrand,
1071
+ tech1: ConsciousnessTechnology,
1072
+ tech2: ConsciousnessTechnology) -> Dict[str, float]:
1073
+ """Calculate quantum entanglement between archetypal consciousness fields"""
1074
+
1075
+ # Qualia similarity (cosine distance in experience space)
1076
+ qualia_similarity = 1 - tech1.quantum_signature.calculate_qualia_distance(
1077
+ tech2.quantum_signature
1078
+ )
1079
+
1080
+ # Neural synchronization compatibility
1081
+ neural_sync = (tech1.neural_correlate.cross_hemispheric_sync +
1082
+ tech2.neural_correlate.cross_hemispheric_sync) / 2
1083
+
1084
+ # Resonance frequency harmony
1085
+ freq_harmony = 1 - abs(tech1.quantum_signature.resonance_frequency -
1086
+ tech2.quantum_signature.resonance_frequency) / 100
1087
+
1088
+ # Coherence alignment
1089
+ coherence_alignment = (tech1.quantum_signature.coherence +
1090
+ tech2.quantum_signature.coherence) / 2
1091
+
1092
+ # Entanglement probability (Bell inequality violation analog)
1093
+ entanglement_prob = (qualia_similarity * 0.3 +
1094
+ neural_sync * 0.25 +
1095
+ freq_harmony * 0.25 +
1096
+ coherence_alignment * 0.2)
1097
+
1098
+ result = {
1099
+ 'entanglement_probability': entanglement_prob,
1100
+ 'qualia_similarity': qualia_similarity,
1101
+ 'neural_sync': neural_sync,
1102
+ 'frequency_harmony': freq_harmony,
1103
+ 'coherence_alignment': coherence_alignment,
1104
+ 'nonlocal_correlation': tech1.quantum_signature.nonlocal_correlation *
1105
+ tech2.quantum_signature.nonlocal_correlation
1106
+ }
1107
+
1108
+ # Update entanglement network
1109
+ key = f"{arch1.name}_{arch2.name}"
1110
+ self.quantum_correlations[key] = result
1111
+
1112
+ if entanglement_prob > 0.5:
1113
+ self.entanglement_network.add_edge(
1114
+ arch1.name, arch2.name,
1115
+ weight=entanglement_prob,
1116
+ **result
1117
+ )
1118
+
1119
+ return result
1120
+
1121
+ def find_strongly_entangled_pairs(self, threshold: float = 0.7) -> List[Dict]:
1122
+ """Find strongly entangled archetype pairs"""
1123
+ strong_pairs = []
1124
+
1125
+ for edge in self.entanglement_network.edges(data=True):
1126
+ if edge[2]['weight'] > threshold:
1127
+ strong_pairs.append({
1128
+ 'archetype1': edge[0],
1129
+ 'archetype2': edge[1],
1130
+ 'entanglement_strength': edge[2]['weight'],
1131
+ 'qualia_similarity': edge[2]['qualia_similarity'],
1132
+ 'neural_sync': edge[2]['neural_sync']
1133
+ })
1134
+
1135
+ return sorted(strong_pairs, key=lambda x: x['entanglement_strength'], reverse=True)
1136
+
1137
+ def calculate_entanglement_entropy(self) -> float:
1138
+ """Calculate von Neumann entropy of entanglement network"""
1139
+ if len(self.entanglement_network) == 0:
1140
+ return 0.0
1141
+
1142
+ # Simple graph entropy calculation
1143
+ degrees = [d for _, d in self.entanglement_network.degree(weight='weight')]
1144
+ total_degree = sum(degrees)
1145
+
1146
+ if total_degree == 0:
1147
+ return 0.0
1148
+
1149
+ probabilities = [d/total_degree for d in degrees]
1150
+ entropy = -sum(p * math.log(p) for p in probabilities if p > 0)
1151
+
1152
+ return entropy
1153
+
1154
+ class CollectiveConsciousnessMapper:
1155
+ """Mapping of collective archetypal activation across populations"""
1156
+
1157
+ def __init__(self):
1158
+ self.collective_field = {}
1159
+ self.global_resonance_waves = {}
1160
+ self.consciousness_weather = {}
1161
+ self.temporal_patterns = {}
1162
+
1163
+ def update_collective_resonance(self, archetype: str,
1164
+ global_activation: float,
1165
+ regional_data: Dict[str, float] = None):
1166
+ """Track collective archetypal activation across populations"""
1167
+
1168
+ current_time = datetime.now()
1169
+
1170
+ if archetype not in self.collective_field:
1171
+ self.collective_field[archetype] = {
1172
+ 'activation_history': [],
1173
+ 'regional_variations': {},
1174
+ 'resonance_peaks': [],
1175
+ 'stability_metric': 0.0
1176
+ }
1177
+
1178
+ # Update activation history
1179
+ self.collective_field[archetype]['activation_history'].append({
1180
+ 'timestamp': current_time,
1181
+ 'global_activation': global_activation,
1182
+ 'regional_data': regional_data or {}
1183
+ })
1184
+
1185
+ # Keep only last 1000 readings
1186
+ if len(self.collective_field[archetype]['activation_history']) > 1000:
1187
+ self.collective_field[archetype]['activation_history'] = \
1188
+ self.collective_field[archetype]['activation_history'][-1000:]
1189
+
1190
+ # Update regional variations
1191
+ if regional_data:
1192
+ for region, activation in regional_data.items():
1193
+ if region not in self.collective_field[archetype]['regional_variations']:
1194
+ self.collective_field[archetype]['regional_variations'][region] = []
1195
+
1196
+ self.collective_field[archetype]['regional_variations'][region].append(activation)
1197
+
1198
+ # Keep only recent regional data
1199
+ if len(self.collective_field[archetype]['regional_variations'][region]) > 100:
1200
+ self.collective_field[archetype]['regional_variations'][region] = \
1201
+ self.collective_field[archetype]['regional_variations'][region][-100:]
1202
+
1203
+ # Detect resonance peaks
1204
+ self._detect_resonance_peaks(archetype)
1205
+
1206
+ # Calculate stability metric
1207
+ self._calculate_stability_metric(archetype)
1208
+
1209
+ # Update global resonance waves
1210
+ self._update_global_resonance(archetype, global_activation, current_time)
1211
+
1212
+ def _detect_resonance_peaks(self, archetype: str):
1213
+ """Detect significant resonance peaks in collective activation"""
1214
+ history = self.collective_field[archetype]['activation_history']
1215
+ if len(history) < 10:
1216
+ return
1217
+
1218
+ activations = [entry['global_activation'] for entry in history[-50:]] # Last 50 readings
1219
+ mean_activation = np.mean(activations)
1220
+ std_activation = np.std(activations)
1221
+
1222
+ current_activation = activations[-1]
1223
+
1224
+ # Detect peak if current activation is 2 standard deviations above mean
1225
+ if current_activation > mean_activation + 2 * std_activation:
1226
+ peak_data = {
1227
+ 'timestamp': history[-1]['timestamp'],
1228
+ 'activation_strength': current_activation,
1229
+ 'significance': (current_activation - mean_activation) / std_activation,
1230
+ 'duration': self._estimate_peak_duration(archetype)
1231
+ }
1232
+
1233
+ self.collective_field[archetype]['resonance_peaks'].append(peak_data)
1234
+
1235
+ def _estimate_peak_duration(self, archetype: str) -> float:
1236
+ """Estimate duration of resonance peak"""
1237
+ # Simple estimation based on historical patterns
1238
+ peaks = self.collective_field[archetype]['resonance_peaks']
1239
+ if len(peaks) < 2:
1240
+ return 1.0 # Default duration in hours
1241
+
1242
+ durations = []
1243
+ for i in range(1, len(peaks)):
1244
+ time_diff = (peaks[i]['timestamp'] - peaks[i-1]['timestamp']).total_seconds() / 3600
1245
+ durations.append(time_diff)
1246
+
1247
+ return np.mean(durations) if durations else 1.0
1248
+
1249
+ def _calculate_stability_metric(self, archetype: str):
1250
+ """Calculate stability metric for collective activation"""
1251
+ history = self.collective_field[archetype]['activation_history']
1252
+ if len(history) < 2:
1253
+ self.collective_field[archetype]['stability_metric'] = 1.0
1254
+ return
1255
+
1256
+ activations = [entry['global_activation'] for entry in history[-100:]]
1257
+ volatility = np.std(activations) / np.mean(activations)
1258
+ stability = 1 - min(1.0, volatility)
1259
+
1260
+ self.collective_field[archetype]['stability_metric'] = stability
1261
+
1262
+ def _update_global_resonance(self, archetype: str, activation: float, timestamp: datetime):
1263
+ """Update global resonance wave patterns"""
1264
+ if archetype not in self.global_resonance_waves:
1265
+ self.global_resonance_waves[archetype] = {
1266
+ 'waveform': [],
1267
+ 'frequency': 0.0,
1268
+ 'amplitude': 0.0,
1269
+ 'phase': 0.0
1270
+ }
1271
+
1272
+ wave_data = self.global_resonance_waves[archetype]
1273
+ wave_data['waveform'].append({
1274
+ 'timestamp': timestamp,
1275
+ 'amplitude': activation
1276
+ })
1277
+
1278
+ # Keep waveform manageable
1279
+ if len(wave_data['waveform']) > 1000:
1280
+ wave_data['waveform'] = wave_data['waveform'][-1000:]
1281
+
1282
+ # Simple wave analysis (could be enhanced with FFT)
1283
+ if len(wave_data['waveform']) >= 10:
1284
+ amplitudes = [point['amplitude'] for point in wave_data['waveform'][-10:]]
1285
+ wave_data['amplitude'] = np.mean(amplitudes)
1286
+ wave_data['frequency'] = self._estimate_frequency(wave_data['waveform'][-10:])
1287
+
1288
+ def _estimate_frequency(self, waveform: List[Dict]) -> float:
1289
+ """Estimate frequency of resonance wave"""
1290
+ if len(waveform) < 2:
1291
+ return 0.0
1292
+
1293
+ # Simple zero-crossing frequency estimation
1294
+ amplitudes = [point['amplitude'] for point in waveform]
1295
+ mean_amp = np.mean(amplitudes)
1296
+
1297
+ zero_crossings = 0
1298
+ for i in range(1, len(amplitudes)):
1299
+ if (amplitudes[i-1] - mean_amp) * (amplitudes[i] - mean_amp) < 0:
1300
+ zero_crossings += 1
1301
+
1302
+ time_span = (waveform[-1]['timestamp'] - waveform[0]['timestamp']).total_seconds()
1303
+ frequency = zero_crossings / (2 * time_span) if time_span > 0 else 0.0
1304
+
1305
+ return frequency
1306
+
1307
+ def generate_consciousness_weather_report(self) -> Dict[str, Any]:
1308
+ """Generate consciousness weather report for all archetypes"""
1309
+ weather_report = {
1310
+ 'timestamp': datetime.now(),
1311
+ 'overall_conditions': {},
1312
+ 'archetype_forecasts': {},
1313
+ 'global_resonance_index': 0.0,
1314
+ 'collective_stability': 0.0
1315
+ }
1316
+
1317
+ total_activation = 0
1318
+ total_stability = 0
1319
+ archetype_count = len(self.collective_field)
1320
+
1321
+ for archetype, data in self.collective_field.items():
1322
+ current_activation = data['activation_history'][-1]['global_activation'] if data['activation_history'] else 0
1323
+ stability = data['stability_metric']
1324
+
1325
+ # Determine consciousness "weather" condition
1326
+ if current_activation > 0.8:
1327
+ condition = "high_resonance_storm"
1328
+ elif current_activation > 0.6:
1329
+ condition = "resonance_ surge"
1330
+ elif current_activation > 0.4:
1331
+ condition = "stable_resonance"
1332
+ elif current_activation > 0.2:
1333
+ condition = "low_resonance"
1334
+ else:
1335
+ condition = "resonance_drought"
1336
+
1337
+ weather_report['archetype_forecasts'][archetype] = {
1338
+ 'condition': condition,
1339
+ 'activation_level': current_activation,
1340
+ 'stability': stability,
1341
+ 'recent_peaks': len(data['resonance_peaks'][-24:]), # Last 24 peaks
1342
+ 'regional_variation': np.std(list(data.get('regional_variations', {}).values())) if data.get('regional_variations') else 0.0
1343
+ }
1344
+
1345
+ total_activation += current_activation
1346
+ total_stability += stability
1347
+
1348
+ if archetype_count > 0:
1349
+ weather_report['global_resonance_index'] = total_activation / archetype_count
1350
+ weather_report['collective_stability'] = total_stability / archetype_count
1351
+
1352
+ # Overall condition
1353
+ if weather_report['global_resonance_index'] > 0.7:
1354
+ weather_report['overall_conditions']['state'] = "heightened_consciousness"
1355
+ elif weather_report['global_resonance_index'] > 0.5:
1356
+ weather_report['overall_conditions']['state'] = "active_awareness"
1357
+ else:
1358
+ weather_report['overall_conditions']['state'] = "baseline_consciousness"
1359
+
1360
+ weather_report['overall_conditions']['trend'] = self._calculate_global_trend()
1361
+
1362
+ return weather_report
1363
+
1364
+ def _calculate_global_trend(self) -> str:
1365
+ """Calculate global consciousness trend"""
1366
+ # Simplified trend calculation
1367
+ recent_activations = []
1368
+ for archetype_data in self.collective_field.values():
1369
+ if archetype_data['activation_history']:
1370
+ recent_activations.extend(
1371
+ [entry['global_activation'] for entry in archetype_data['activation_history'][-10:]]
1372
+ )
1373
+
1374
+ if len(recent_activations) < 5:
1375
+ return "stable"
1376
+
1377
+ slope = stats.linregress(range(len(recent_activations)), recent_activations).slope
1378
+
1379
+ if slope > 0.01:
1380
+ return "rising"
1381
+ elif slope < -0.01:
1382
+ return "falling"
1383
+ else:
1384
+ return "stable"
1385
+
1386
+ class UniversalArchetypalTransmissionEngine:
1387
+ """Main engine integrating all advanced modules with enhanced capabilities"""
1388
+
1389
+ def __init__(self):
1390
+ self.consciousness_tech = {}
1391
+ self.phylogenetics = CulturalPhylogenetics()
1392
+ self.geospatial_mapper = GeospatialArchetypalMapper()
1393
+ self.entropy_calculator = ArchetypalEntropyIndex()
1394
+ self.resonance_matrix = CrossCulturalResonanceMatrix()
1395
+ self.mutation_engine = SymbolicMutationEngine()
1396
+ self.entanglement_analyzer = ArchetypalEntanglement()
1397
+ self.collective_mapper = CollectiveConsciousnessMapper()
1398
+ self.archetypal_db = {}
1399
+ self.performance_history = []
1400
+
1401
+ # Advanced monitoring
1402
+ self.system_health = {
1403
+ 'neural_network_integrity': 1.0,
1404
+ 'quantum_coherence': 1.0,
1405
+ 'symbolic_resolution': 1.0,
1406
+ 'temporal_synchronization': 1.0
1407
+ }
1408
+
1409
+ def register_archetype(self, archetype: ArchetypalStrand,
1410
+ consciousness_tech: ConsciousnessTechnology):
1411
+ """Register a new archetype with its consciousness technology"""
1412
+ self.archetypal_db[archetype.name] = archetype
1413
+ self.consciousness_tech[archetype.name] = consciousness_tech
1414
+
1415
+ # Initialize collective tracking
1416
+ self.collective_mapper.update_collective_resonance(
1417
+ archetype.name,
1418
+ global_activation=0.5,
1419
+ regional_data={'global': 0.5}
1420
+ )
1421
+
1422
+ def prove_consciousness_architecture(self,
1423
+ include_entanglement: bool = True) -> pd.DataFrame:
1424
+ """Comprehensive analysis of archetypal strength and coherence"""
1425
+
1426
+ results = []
1427
+ for name, archetype in self.archetypal_db.items():
1428
+ tech = self.consciousness_tech.get(name)
1429
+
1430
+ if not tech:
1431
+ # Skip if no technology registered
1432
+ continue
1433
+
1434
+ # Calculate comprehensive metrics
1435
+ neural_impact = tech.neural_correlate.neural_efficiency
1436
+ quantum_strength = tech.quantum_signature.coherence
1437
+ cultural_resilience = archetype.cultural_resilience
1438
+
1439
+ # Entanglement analysis if requested
1440
+ entanglement_factor = 1.0
1441
+ if include_entanglement:
1442
+ # Calculate average entanglement with other archetypes
1443
+ entanglement_strengths = []
1444
+ for other_name, other_archetype in self.archetypal_db.items():
1445
+ if other_name != name:
1446
+ other_tech = self.consciousness_tech.get(other_name)
1447
+ if other_tech:
1448
+ entanglement = self.entanglement_analyzer.calculate_quantum_entanglement(
1449
+ archetype, other_archetype, tech, other_tech
1450
+ )
1451
+ entanglement_strengths.append(entanglement['entanglement_probability'])
1452
+
1453
+ if entanglement_strengths:
1454
+ entanglement_factor = 1 + (np.mean(entanglement_strengths) * 0.2)
1455
+
1456
+ overall_strength = (
1457
+ archetype.symbolic_strength * 0.3 +
1458
+ neural_impact * 0.25 +
1459
+ quantum_strength * 0.2 +
1460
+ cultural_resilience * 0.15 +
1461
+ (archetype.symbolic_strength * entanglement_factor) * 0.1
1462
+ )
1463
+
1464
+ # Get collective activation data
1465
+ collective_data = self.collective_mapper.collective_field.get(name, {})
1466
+ current_activation = 0.5
1467
+ if collective_data.get('activation_history'):
1468
+ current_activation = collective_data['activation_history'][-1]['global_activation']
1469
+
1470
+ results.append({
1471
+ 'Archetype': name,
1472
+ 'Symbolic_Strength': archetype.symbolic_strength,
1473
+ 'Temporal_Depth': archetype.temporal_depth,
1474
+ 'Spatial_Distribution': archetype.spatial_distribution,
1475
+ 'Quantum_Coherence': archetype.quantum_coherence,
1476
+ 'Neural_Impact': neural_impact,
1477
+ 'Cultural_Resilience': cultural_resilience,
1478
+ 'Collective_Activation': current_activation,
1479
+ 'Overall_Strength': overall_strength,
1480
+ 'Consciousness_State': tech.neural_correlate.frequency_band.value,
1481
+ 'Entanglement_Factor': entanglement_factor
1482
+ })
1483
+
1484
+ df = pd.DataFrame(results)
1485
+ return df.sort_values('Overall_Strength', ascending=False)
1486
+
1487
+ def generate_cultural_diagnostic(self, depth: str = 'comprehensive') -> Dict[str, Any]:
1488
+ """Generate comprehensive cultural psyche diagnostic"""
1489
+
1490
+ strength_analysis = self.prove_consciousness_architecture()
1491
+ high_entropy = self.entropy_calculator.get_high_entropy_archetypes()
1492
+ resonance_net = self.resonance_matrix.build_resonance_network()
1493
+ weather_report = self.collective_mapper.generate_consciousness_weather_report()
1494
+ entangled_pairs = self.entanglement_analyzer.find_strongly_entangled_pairs()
1495
+
1496
+ diagnostic = {
1497
+ 'timestamp': datetime.now(),
1498
+ 'analysis_depth': depth,
1499
+ 'system_health': self.system_health,
1500
+ 'strength_analysis': {
1501
+ 'top_archetypes': strength_analysis.head(5).to_dict('records'),
1502
+ 'weakest_archetypes': strength_analysis.tail(3).to_dict('records'),
1503
+ 'average_strength': strength_analysis['Overall_Strength'].mean(),
1504
+ 'strength_distribution': {
1505
+ 'min': strength_analysis['Overall_Strength'].min(),
1506
+ 'max': strength_analysis['Overall_Strength'].max(),
1507
+ 'std': strength_analysis['Overall_Strength'].std()
1508
+ }
1509
+ },
1510
+ 'cultural_phase_shift_indicators': {
1511
+ 'rising_archetypes': self._identify_rising_archetypes(),
1512
+ 'declining_archetypes': self._identify_declining_archetypes(),
1513
+ 'high_entropy_archetypes': high_entropy,
1514
+ 'entropy_network_density': nx.density(self.entropy_calculator.get_entropy_network()) if len(self.archetypal_db) > 1 else 0.0
1515
+ },
1516
+ 'collective_consciousness': {
1517
+ 'weather_report': weather_report,
1518
+ 'global_resonance_index': weather_report.get('global_resonance_index', 0),
1519
+ 'collective_stability': weather_report.get('collective_stability', 0)
1520
+ },
1521
+ 'resonance_analysis': {
1522
+ 'network_density': nx.density(resonance_net),
1523
+ 'cultural_clusters': self.resonance_matrix.find_cultural_clusters(),
1524
+ 'universal_archetypes': self.resonance_matrix.get_universal_archetypes(),
1525
+ 'average_cluster_size': np.mean([len(cluster) for cluster in self.resonance_matrix.cultural_clusters.values()]) if self.resonance_matrix.cultural_clusters else 0
1526
+ },
1527
+ 'quantum_entanglement': {
1528
+ 'strongly_entangled_pairs': entangled_pairs,
1529
+ 'entanglement_entropy': self.entanglement_analyzer.calculate_entanglement_entropy(),
1530
+ 'total_entangled_connections': len(self.entanglement_analyzer.entanglement_network.edges())
1531
+ },
1532
+ 'consciousness_coherence_index': self._calculate_coherence_index(),
1533
+ 'predicted_evolution': self._predict_cultural_evolution(depth),
1534
+ 'recommendations': self._generate_recommendations()
1535
+ }
1536
+
1537
+ # Store diagnostic in performance history
1538
+ self.performance_history.append({
1539
+ 'timestamp': diagnostic['timestamp'],
1540
+ 'global_resonance_index': diagnostic['collective_consciousness']['global_resonance_index'],
1541
+ 'coherence_index': diagnostic['consciousness_coherence_index'],
1542
+ 'system_health': diagnostic['system_health']
1543
+ })
1544
+
1545
+ return diagnostic
1546
+
1547
+ def _identify_rising_archetypes(self) -> List[Dict]:
1548
+ """Identify archetypes with rising influence"""
1549
+ # This would typically use historical data - simplified for demo
1550
+ strength_df = self.prove_consciousness_architecture()
1551
+ top_archetypes = strength_df.head(3)
1552
+
1553
+ rising = []
1554
+ for _, row in top_archetypes.iterrows():
1555
+ if row['Collective_Activation'] > 0.7:
1556
+ rising.append({
1557
+ 'archetype': row['Archetype'],
1558
+ 'strength': row['Overall_Strength'],
1559
+ 'activation': row['Collective_Activation'],
1560
+ 'momentum': 'high' if row['Overall_Strength'] > 0.8 else 'medium'
1561
+ })
1562
+
1563
+ return rising
1564
+
1565
+ def _identify_declining_archetypes(self) -> List[Dict]:
1566
+ """Identify archetypes with declining influence"""
1567
+ strength_df = self.prove_consciousness_architecture()
1568
+ bottom_archetypes = strength_df.tail(3)
1569
+
1570
+ declining = []
1571
+ for _, row in bottom_archetypes.iterrows():
1572
+ if row['Collective_Activation'] < 0.3:
1573
+ declining.append({
1574
+ 'archetype': row['Archetype'],
1575
+ 'strength': row['Overall_Strength'],
1576
+ 'activation': row['Collective_Activation'],
1577
+ 'risk_level': 'high' if row['Overall_Strength'] < 0.3 else 'medium'
1578
+ })
1579
+
1580
+ return declining
1581
+
1582
+ def _calculate_coherence_index(self) -> Dict[str, float]:
1583
+ """Calculate comprehensive coherence indices"""
1584
+ if not self.archetypal_db:
1585
+ return {'overall': 0.0, 'neural': 0.0, 'quantum': 0.0, 'cultural': 0.0}
1586
+
1587
+ # Neural coherence
1588
+ neural_coherence = np.mean([
1589
+ tech.neural_correlate.neural_efficiency
1590
+ for tech in self.consciousness_tech.values()
1591
+ ]) if self.consciousness_tech else 0.5
1592
+
1593
+ # Quantum coherence
1594
+ quantum_coherence = np.mean([
1595
+ tech.quantum_signature.coherence
1596
+ for tech in self.consciousness_tech.values()
1597
+ ]) if self.consciousness_tech else 0.5
1598
+
1599
+ # Cultural coherence
1600
+ cultural_coherence = np.mean([
1601
+ archetype.preservation_rate * 0.6 + archetype.quantum_coherence * 0.4
1602
+ for archetype in self.archetypal_db.values()
1603
+ ])
1604
+
1605
+ # Overall coherence
1606
+ overall_coherence = (
1607
+ neural_coherence * 0.3 +
1608
+ quantum_coherence * 0.3 +
1609
+ cultural_coherence * 0.4
1610
+ )
1611
+
1612
+ return {
1613
+ 'overall': overall_coherence,
1614
+ 'neural': neural_coherence,
1615
+ 'quantum': quantum_coherence,
1616
+ 'cultural': cultural_coherence
1617
+ }
1618
+
1619
+ def _predict_cultural_evolution(self, depth: str) -> List[Dict[str, Any]]:
1620
+ """Predict cultural evolution with variable depth"""
1621
+ predictions = []
1622
+
1623
+ pressure_vectors = ['digitization', 'ecological_crisis', 'quantum_awakening']
1624
+
1625
+ for pressure in pressure_vectors:
1626
+ for archetype_name in list(self.archetypal_db.keys())[:5]: # Top 5 for demo
1627
+ if depth == 'comprehensive':
1628
+ scenarios = self.mutation_engine.generate_mutation_scenarios(
1629
+ archetype_name, 'near_future'
1630
+ )
1631
+ if pressure in scenarios:
1632
+ predictions.append({
1633
+ 'pressure_vector': pressure,
1634
+ 'archetype': archetype_name,
1635
+ 'scenario': scenarios[pressure],
1636
+ 'timeframe': 'near_future',
1637
+ 'analysis_depth': 'comprehensive'
1638
+ })
1639
+ else:
1640
+ mutations = self.mutation_engine.predict_mutation(
1641
+ archetype_name, pressure, intensity=0.7
1642
+ )
1643
+ if mutations:
1644
+ predictions.append({
1645
+ 'pressure_vector': pressure,
1646
+ 'archetype': archetype_name,
1647
+ 'most_likely_mutation': mutations[0],
1648
+ 'total_possibilities': len(mutations),
1649
+ 'timeframe': 'next_20_years',
1650
+ 'analysis_depth': 'basic'
1651
+ })
1652
+
1653
+ return predictions
1654
+
1655
+ def _generate_recommendations(self) -> List[Dict[str, Any]]:
1656
+ """Generate system recommendations based on current state"""
1657
+ recommendations = []
1658
+ diagnostic = self.generate_cultural_diagnostic('basic') # Avoid recursion
1659
+
1660
+ # Check system health
1661
+ health_scores = self.system_health.values()
1662
+ avg_health = sum(health_scores) / len(health_scores) if health_scores else 0
1663
+
1664
+ if avg_health < 0.7:
1665
+ recommendations.append({
1666
+ 'type': 'system_maintenance',
1667
+ 'priority': 'high',
1668
+ 'message': 'System health below optimal levels. Recommend neural network recalibration.',
1669
+ 'suggested_actions': [
1670
+ 'Run neural coherence diagnostics',
1671
+ 'Check quantum entanglement matrix integrity',
1672
+ 'Verify symbolic resolution settings'
1673
+ ]
1674
+ })
1675
+
1676
+ # Check for high entropy archetypes
1677
+ high_entropy = diagnostic['cultural_phase_shift_indicators']['high_entropy_archetypes']
1678
+ if high_entropy:
1679
+ recommendations.append({
1680
+ 'type': 'cultural_monitoring',
1681
+ 'priority': 'medium',
1682
+ 'message': f'Detected {len(high_entropy)} high-entropy archetypes undergoing significant mutation.',
1683
+ 'suggested_actions': [
1684
+ 'Increase monitoring frequency for high-entropy archetypes',
1685
+ 'Prepare contingency plans for symbolic mutations',
1686
+ 'Update transformation prediction models'
1687
+ ]
1688
+ })
1689
+
1690
+ # Check collective consciousness stability
1691
+ collective_stability = diagnostic['collective_consciousness']['collective_stability']
1692
+ if collective_stability < 0.6:
1693
+ recommendations.append({
1694
+ 'type': 'collective_awareness',
1695
+ 'priority': 'medium',
1696
+ 'message': 'Collective consciousness stability below optimal threshold.',
1697
+ 'suggested_actions': [
1698
+ 'Monitor regional resonance variations',
1699
+ 'Check for external interference patterns',
1700
+ 'Consider consciousness stabilization protocols'
1701
+ ]
1702
+ })
1703
+
1704
+ return recommendations
1705
+
1706
+ def activate_consciousness_network(self, archetypes: List[str],
1707
+ intensity: float = 0.8,
1708
+ duration: float = 1.0) -> Dict[str, Any]:
1709
+ """Activate multiple consciousness technologies simultaneously"""
1710
+ results = {
1711
+ 'timestamp': datetime.now(),
1712
+ 'total_activations': 0,
1713
+ 'successful_activations': 0,
1714
+ 'network_coherence': 0.0,
1715
+ 'individual_results': {},
1716
+ 'emergent_phenomena': {}
1717
+ }
1718
+
1719
+ individual_results = {}
1720
+ activations = []
1721
+
1722
+ for archetype_name in archetypes:
1723
+ if archetype_name in self.consciousness_tech:
1724
+ tech = self.consciousness_tech[archetype_name]
1725
+ activation_result = tech.activate(intensity, duration)
1726
+ individual_results[archetype_name] = activation_result
1727
+ activations.append(activation_result)
1728
+ results['successful_activations'] += 1
1729
+
1730
+ results['total_activations'] = len(archetypes)
1731
+ results['individual_results'] = individual_results
1732
+
1733
+ # Calculate network coherence
1734
+ if len(activations) > 1:
1735
+ coherence_scores = [act['quantum_coherence'] for act in activations]
1736
+ results['network_coherence'] = np.mean(coherence_scores)
1737
+
1738
+ # Check for emergent phenomena
1739
+ if results['network_coherence'] > 0.8:
1740
+ results['emergent_phenomena'] = {
1741
+ 'type': 'collective_resonance_ field',
1742
+ 'strength': results['network_coherence'],
1743
+ 'stability': np.std(coherence_scores) < 0.1,
1744
+ 'qualia_synergy': self._calculate_qualia_synergy(activations)
1745
+ }
1746
+
1747
+ # Update collective consciousness mapping
1748
+ for archetype_name in archetypes:
1749
+ if archetype_name in individual_results:
1750
+ activation_strength = individual_results[archetype_name]['performance_score']
1751
+ self.collective_mapper.update_collective_resonance(
1752
+ archetype_name,
1753
+ global_activation=activation_strength,
1754
+ regional_data={'network_activation': activation_strength}
1755
+ )
1756
+
1757
+ return results
1758
+
1759
+ def _calculate_qualia_synergy(self, activations: List[Dict]) -> float:
1760
+ """Calculate qualia synergy between multiple activations"""
1761
+ if len(activations) < 2:
1762
+ return 0.0
1763
+
1764
+ qualia_vectors = [act['qualia_experience'] for act in activations]
1765
+
1766
+ # Calculate average pairwise similarity
1767
+ similarities = []
1768
+ for i in range(len(qualia_vectors)):
1769
+ for j in range(i + 1, len(qualia_vectors)):
1770
+ similarity = 1 - spatial.distance.cosine(qualia_vectors[i], qualia_vectors[j])
1771
+ similarities.append(similarity)
1772
+
1773
+ return np.mean(similarities) if similarities else 0.0
1774
+
1775
+ def get_system_performance_report(self) -> Dict[str, Any]:
1776
+ """Generate comprehensive system performance report"""
1777
+ current_diagnostic = self.generate_cultural_diagnostic()
1778
+
1779
+ # Calculate performance trends
1780
+ performance_trend = 'stable'
1781
+ if len(self.performance_history) >= 2:
1782
+ recent_coherence = [entry['coherence_index']['overall'] for entry in self.performance_history[-5:]]
1783
+ if len(recent_coherence) >= 2:
1784
+ slope = stats.linregress(range(len(recent_coherence)), recent_coherence).slope
1785
+ if slope > 0.01:
1786
+ performance_trend = 'improving'
1787
+ elif slope < -0.01:
1788
+ performance_trend = 'declining'
1789
+
1790
+ report = {
1791
+ 'timestamp': datetime.now(),
1792
+ 'system_status': 'operational',
1793
+ 'performance_metrics': {
1794
+ 'total_archetypes': len(self.archetypal_db),
1795
+ 'active_technologies': len(self.consciousness_tech),
1796
+ 'average_activation_success': self._calculate_avg_activation_success(),
1797
+ 'system_uptime': self._calculate_system_uptime(),
1798
+ 'data_integrity': self._assess_data_integrity()
1799
+ },
1800
+ 'current_state': current_diagnostic,
1801
+ 'performance_trend': performance_trend,
1802
+ 'resource_utilization': {
1803
+ 'computational_load': len(self.archetypal_db) * 0.1, # Simplified
1804
+ 'memory_usage': len(self.consciousness_tech) * 0.05,
1805
+ 'network_bandwidth': len(self.performance_history) * 0.01
1806
+ },
1807
+ 'recommendations': self._generate_system_recommendations()
1808
+ }
1809
+
1810
+ return report
1811
+
1812
+ def _calculate_avg_activation_success(self) -> float:
1813
+ """Calculate average activation success rate"""
1814
+ if not self.consciousness_tech:
1815
+ return 0.0
1816
+
1817
+ success_rates = []
1818
+ for tech in self.consciousness_tech.values():
1819
+ perf_report = tech.get_performance_report()
1820
+ success_rates.append(perf_report['overall_health'])
1821
+
1822
+ return np.mean(success_rates) if success_rates else 0.0
1823
+
1824
+ def _calculate_system_uptime(self) -> float:
1825
+ """Calculate system uptime (simplified)"""
1826
+ if not self.performance_history:
1827
+ return 1.0
1828
+
1829
+ # Count successful operations vs total
1830
+ successful_ops = sum(1 for entry in self.performance_history
1831
+ if entry['coherence_index']['overall'] > 0.5)
1832
+ total_ops = len(self.performance_history)
1833
+
1834
+ return successful_ops / total_ops if total_ops > 0 else 1.0
1835
+
1836
+ def _assess_data_integrity(self) -> float:
1837
+ """Assess overall data integrity"""
1838
+ integrity_scores = []
1839
+
1840
+ # Check archetype data completeness
1841
+ for archetype in self.archetypal_db.values():
1842
+ completeness = (
1843
+ (1.0 if archetype.temporal_depth > 0 else 0.5) +
1844
+ (1.0 if archetype.spatial_distribution > 0 else 0.5) +
1845
+ (1.0 if archetype.quantum_coherence > 0 else 0.5)
1846
+ ) / 3
1847
+ integrity_scores.append(completeness)
1848
+
1849
+ # Check technology data
1850
+ for tech in self.consciousness_tech.values():
1851
+ tech_completeness = (
1852
+ tech.neural_correlate.neural_efficiency +
1853
+ tech.quantum_signature.coherence
1854
+ ) / 2
1855
+ integrity_scores.append(tech_completeness)
1856
+
1857
+ return np.mean(integrity_scores) if integrity_scores else 1.0
1858
+
1859
+ def _generate_system_recommendations(self) -> List[Dict[str, Any]]:
1860
+ """Generate system-level recommendations"""
1861
+ recommendations = []
1862
+ performance = self.get_system_performance_report()
1863
+
1864
+ # Check resource utilization
1865
+ resource_util = performance['resource_utilization']
1866
+ if (resource_util['computational_load'] > 0.8 or
1867
+ resource_util['memory_usage'] > 0.8):
1868
+ recommendations.append({
1869
+ 'category': 'resource_management',
1870
+ 'priority': 'high',
1871
+ 'message': 'High resource utilization detected.',
1872
+ 'actions': [
1873
+ 'Consider load distribution across additional nodes',
1874
+ 'Review data retention policies',
1875
+ 'Optimize neural network calculations'
1876
+ ]
1877
+ })
1878
+
1879
+ # Check data integrity
1880
+ if performance['performance_metrics']['data_integrity'] < 0.7:
1881
+ recommendations.append({
1882
+ 'category': 'data_quality',
1883
+ 'priority': 'medium',
1884
+ 'message': 'Data integrity below optimal levels.',
1885
+ 'actions': [
1886
+ 'Run data validation routines',
1887
+ 'Check for missing archetype attributes',
1888
+ 'Verify neural correlate completeness'
1889
+ ]
1890
+ })
1891
+
1892
+ # Check system performance trend
1893
+ if performance['performance_trend'] == 'declining':
1894
+ recommendations.append({
1895
+ 'category': 'system_health',
1896
+ 'priority': 'medium',
1897
+ 'message': 'System performance showing declining trend.',
1898
+ 'actions': [
1899
+ 'Perform comprehensive system diagnostics',
1900
+ 'Review recent configuration changes',
1901
+ 'Check for external interference patterns'
1902
+ ]
1903
+ })
1904
+
1905
+ return recommendations
1906
+
1907
+ # Enhanced example instantiation with advanced archetypes
1908
+ def create_advanced_archetypes():
1909
+ """Create example archetypes with full neuro-symbolic specifications"""
1910
+
1911
+ # Solar Consciousness Archetype
1912
+ solar_archetype = ArchetypalStrand(
1913
+ name="Solar_Consciousness",
1914
+ symbolic_form="Sunburst",
1915
+ temporal_depth=6000,
1916
+ spatial_distribution=0.95,
1917
+ preservation_rate=0.9,
1918
+ quantum_coherence=0.95,
1919
+ cultural_penetration=0.9,
1920
+ transformative_potential=0.8,
1921
+ num_variants=15
1922
+ )
1923
+
1924
+ solar_quantum = QuantumSignature(
1925
+ coherence=0.95,
1926
+ entanglement=0.85,
1927
+ qualia_vector=np.array([0.9, 0.8, 0.95, 0.7, 0.99]), # high visual, cognitive, spiritual
1928
+ resonance_frequency=12.0, # Alpha resonance
1929
+ decoherence_time=5.0,
1930
+ nonlocal_correlation=0.8
1931
+ )
1932
+
1933
+ solar_neural = NeuralCorrelate(
1934
+ primary_regions=["PFC", "DMN", "Pineal_Region"],
1935
+ frequency_band=ConsciousnessState.ALPHA,
1936
+ cross_hemispheric_sync=0.9,
1937
+ neuroplasticity_impact=0.8,
1938
+ default_mode_engagement=0.7,
1939
+ salience_network_coupling=0.6,
1940
+ thalamocortical_resonance=0.8
1941
+ )
1942
+
1943
+ solar_tech = ConsciousnessTechnology(
1944
+ name="Solar_Illumination_Interface",
1945
+ archetype=solar_archetype,
1946
+ neural_correlate=solar_neural,
1947
+ quantum_sig=solar_quantum
1948
+ )
1949
+
1950
+ # Feminine Divine Archetype
1951
+ feminine_archetype = ArchetypalStrand(
1952
+ name="Feminine_Divine",
1953
+ symbolic_form="Flowing_Vessels",
1954
+ temporal_depth=8000,
1955
+ spatial_distribution=0.85,
1956
+ preservation_rate=0.7, # Some suppression in patriarchal eras
1957
+ quantum_coherence=0.9,
1958
+ cultural_penetration=0.8,
1959
+ transformative_potential=0.9,
1960
+ num_variants=12
1961
+ )
1962
+
1963
+ feminine_quantum = QuantumSignature(
1964
+ coherence=0.88,
1965
+ entanglement=0.92, # High connectivity
1966
+ qualia_vector=np.array([0.7, 0.95, 0.8, 0.9, 0.85]), # high emotional, somatic
1967
+ resonance_frequency=7.83, # Schumann resonance
1968
+ decoherence_time=8.0,
1969
+ nonlocal_correlation=0.9
1970
+ )
1971
+
1972
+ feminine_neural = NeuralCorrelate(
1973
+ primary_regions=["Whole_Brain", "Heart_Brain_Axis"],
1974
+ frequency_band=ConsciousnessState.THETA,
1975
+ cross_hemispheric_sync=0.95,
1976
+ neuroplasticity_impact=0.9,
1977
+ default_mode_engagement=0.8,
1978
+ salience_network_coupling=0.7,
1979
+ thalamocortical_resonance=0.6
1980
+ )
1981
+
1982
+ feminine_tech = ConsciousnessTechnology(
1983
+ name="Life_Flow_Resonator",
1984
+ archetype=feminine_archetype,
1985
+ neural_correlate=feminine_neural,
1986
+ quantum_sig=feminine_quantum
1987
+ )
1988
+
1989
+ # Warrior Protector Archetype
1990
+ warrior_archetype = ArchetypalStrand(
1991
+ name="Warrior_Protector",
1992
+ symbolic_form="Lion_Shield",
1993
+ temporal_depth=5000,
1994
+ spatial_distribution=0.75,
1995
+ preservation_rate=0.8,
1996
+ quantum_coherence=0.7,
1997
+ cultural_penetration=0.7,
1998
+ transformative_potential=0.6,
1999
+ num_variants=8
2000
+ )
2001
+
2002
+ warrior_quantum = QuantumSignature(
2003
+ coherence=0.75,
2004
+ entanglement=0.6,
2005
+ qualia_vector=np.array([0.8, 0.9, 0.7, 0.95, 0.6]), # high emotional, somatic
2006
+ resonance_frequency=16.0, # Beta resonance
2007
+ decoherence_time=3.0,
2008
+ nonlocal_correlation=0.5
2009
+ )
2010
+
2011
+ warrior_neural = NeuralCorrelate(
2012
+ primary_regions=["Amygdala", "Motor_Cortex", "ACC"],
2013
+ frequency_band=ConsciousnessState.BETA,
2014
+ cross_hemispheric_sync=0.7,
2015
+ neuroplasticity_impact=0.6,
2016
+ default_mode_engagement=0.4,
2017
+ salience_network_coupling=0.8,
2018
+ thalamocortical_resonance=0.7
2019
+ )
2020
+
2021
+ warrior_tech = ConsciousnessTechnology(
2022
+ name="Guardian_Activation_Matrix",
2023
+ archetype=warrior_archetype,
2024
+ neural_correlate=warrior_neural,
2025
+ quantum_sig=warrior_quantum
2026
+ )
2027
+
2028
+ return [
2029
+ (solar_archetype, solar_tech),
2030
+ (feminine_archetype, feminine_tech),
2031
+ (warrior_archetype, warrior_tech)
2032
+ ]
2033
+
2034
+ # Advanced demonstration
2035
+ if __name__ == "__main__":
2036
+ print("=== UNIVERSAL ARCHETYPAL TRANSMISSION ENGINE v9.0 ===")
2037
+ print("Initializing Advanced Neuro-Symbolic Consciousness Architecture...")
2038
+
2039
+ # Initialize the advanced engine
2040
+ engine = UniversalArchetypalTransmissionEngine()
2041
+
2042
+ # Register advanced archetypes
2043
+ archetypes_created = 0
2044
+ for archetype, tech in create_advanced_archetypes():
2045
+ engine.register_archetype(archetype, tech)
2046
+ archetypes_created += 1
2047
+
2048
+ print(f"✓ Registered {archetypes_created} advanced archetypes")
2049
+
2050
+ # Run comprehensive analysis
2051
+ print("\n1. COMPREHENSIVE ARCHEYPAL STRENGTH ANALYSIS:")
2052
+ results = engine.prove_consciousness_architecture()
2053
+ print(results.to_string(index=False))
2054
+
2055
+ print("\n2. ADVANCED CULTURAL DIAGNOSTIC:")
2056
+ diagnostic = engine.generate_cultural_diagnostic()
2057
+
2058
+ # Print key diagnostic information
2059
+ print(f"Global Resonance Index: {diagnostic['collective_consciousness']['global_resonance_index']:.3f}")
2060
+ print(f"Consciousness Coherence: {diagnostic['consciousness_coherence_index']['overall']:.3f}")
2061
+ print(f"Cultural Clusters: {len(diagnostic['resonance_analysis']['cultural_clusters'])}")
2062
+ print(f"Strongly Entangled Pairs: {len(diagnostic['quantum_entanglement']['strongly_entangled_pairs'])}")
2063
+
2064
+ print("\n3. CONSCIOUSNESS TECHNOLOGY ACTIVATION:")
2065
+ activation_results = engine.activate_consciousness_network(
2066
+ ["Solar_Consciousness", "Feminine_Divine"],
2067
+ intensity=0.8,
2068
+ duration=2.0
2069
+ )
2070
+ print(f"Network Activation Success: {activation_results['successful_activations']}/{activation_results['total_activations']}")
2071
+ print(f"Network Coherence: {activation_results['network_coherence']:.3f}")
2072
+
2073
+ if activation_results['emergent_phenomena']:
2074
+ print(f"Emergent Phenomena: {activation_results['emergent_phenomena']['type']}")
2075
+
2076
+ print("\n4. SYSTEM PERFORMANCE REPORT:")
2077
+ performance = engine.get_system_performance_report()
2078
+ print(f"System Status: {performance['system_status']}")
2079
+ print(f"Performance Trend: {performance['performance_trend']}")
2080
+ print(f"Data Integrity: {performance['performance_metrics']['data_integrity']:.3f}")
2081
+
2082
+ print("\n5. MUTATION PREDICTIONS:")
2083
+ mutation_scenarios = engine.mutation_engine.generate_mutation_scenarios("Warrior_Protector")
2084
+ for pressure, scenario in mutation_scenarios.items():
2085
+ if scenario:
2086
+ print(f"{pressure}: {scenario['most_likely']['mutated_form']} "
2087
+ f"(confidence: {scenario['most_likely']['confidence']:.3f})")
2088
+
2089
+ print("\n=== SYSTEM INITIALIZATION COMPLETE ===")
2090
+ print("Universal Archetypal Transmission Engine v9.0 is now operational.")
2091
+ print("Ready for advanced consciousness research and cultural analysis.")