Create ADVANCED_CONSCIOUSNESS
Browse filesCultural analysis framework exploration
- ADVANCED_CONSCIOUSNESS +2091 -0
ADVANCED_CONSCIOUSNESS
ADDED
|
@@ -0,0 +1,2091 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Dict, List, Tuple, Optional, Any
|
| 5 |
+
from enum import Enum
|
| 6 |
+
import math
|
| 7 |
+
from scipy import spatial, stats
|
| 8 |
+
import networkx as nx
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
import json
|
| 11 |
+
from collections import defaultdict
|
| 12 |
+
import warnings
|
| 13 |
+
warnings.filterwarnings('ignore')
|
| 14 |
+
|
| 15 |
+
class ConsciousnessState(Enum):
|
| 16 |
+
DELTA = "Deep Unconscious" # 0.5-4 Hz
|
| 17 |
+
THETA = "Subconscious" # 4-8 Hz
|
| 18 |
+
ALPHA = "Relaxed Awareness" # 8-12 Hz
|
| 19 |
+
BETA = "Active Cognition" # 12-30 Hz
|
| 20 |
+
GAMMA = "Transcendent Unity" # 30-100 Hz
|
| 21 |
+
SCHUMANN = "Earth Resonance" # 7.83 Hz
|
| 22 |
+
|
| 23 |
+
@dataclass
|
| 24 |
+
class QuantumSignature:
|
| 25 |
+
"""Qualia state vector for consciousness experience"""
|
| 26 |
+
coherence: float # 0-1, quantum coherence level
|
| 27 |
+
entanglement: float # 0-1, non-local connectivity
|
| 28 |
+
qualia_vector: np.ndarray # 5D experience vector [visual, emotional, cognitive, somatic, spiritual]
|
| 29 |
+
resonance_frequency: float # Hz, characteristic resonance
|
| 30 |
+
decoherence_time: float = 1.0 # Time until quantum state collapse
|
| 31 |
+
nonlocal_correlation: float = 0.5 # EPR-type correlations
|
| 32 |
+
|
| 33 |
+
def calculate_qualia_distance(self, other: 'QuantumSignature') -> float:
|
| 34 |
+
"""Calculate distance between qualia experiences using cosine similarity"""
|
| 35 |
+
return spatial.distance.cosine(self.qualia_vector, other.qualia_vector)
|
| 36 |
+
|
| 37 |
+
def entanglement_entropy(self) -> float:
|
| 38 |
+
"""Calculate von Neumann entropy of quantum state"""
|
| 39 |
+
return -self.coherence * math.log(self.coherence + 1e-10) if self.coherence > 0 else 0
|
| 40 |
+
|
| 41 |
+
def evolve_state(self, time: float) -> 'QuantumSignature':
|
| 42 |
+
"""Evolve quantum state over time with decoherence"""
|
| 43 |
+
decay = math.exp(-time / self.decoherence_time)
|
| 44 |
+
return QuantumSignature(
|
| 45 |
+
coherence=self.coherence * decay,
|
| 46 |
+
entanglement=self.entanglement * decay,
|
| 47 |
+
qualia_vector=self.qualia_vector * decay,
|
| 48 |
+
resonance_frequency=self.resonance_frequency,
|
| 49 |
+
decoherence_time=self.decoherence_time,
|
| 50 |
+
nonlocal_correlation=self.nonlocal_correlation * decay
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
@dataclass
|
| 54 |
+
class NeuralCorrelate:
|
| 55 |
+
"""Brain region and frequency correlates with advanced connectivity"""
|
| 56 |
+
primary_regions: List[str] # e.g., ["PFC", "DMN", "Visual Cortex"]
|
| 57 |
+
frequency_band: ConsciousnessState
|
| 58 |
+
cross_hemispheric_sync: float # 0-1
|
| 59 |
+
neuroplasticity_impact: float # 0-1
|
| 60 |
+
default_mode_engagement: float = 0.5 # 0-1, DMN involvement
|
| 61 |
+
salience_network_coupling: float = 0.5 # 0-1, SN connectivity
|
| 62 |
+
thalamocortical_resonance: float = 0.5 # 0-1, thalamic gating
|
| 63 |
+
|
| 64 |
+
@property
|
| 65 |
+
def neural_efficiency(self) -> float:
|
| 66 |
+
"""Calculate overall neural processing efficiency"""
|
| 67 |
+
weights = [0.3, 0.25, 0.2, 0.15, 0.1]
|
| 68 |
+
factors = [
|
| 69 |
+
self.cross_hemispheric_sync,
|
| 70 |
+
self.neuroplasticity_impact,
|
| 71 |
+
self.default_mode_engagement,
|
| 72 |
+
self.salience_network_coupling,
|
| 73 |
+
self.thalamocortical_resonance
|
| 74 |
+
]
|
| 75 |
+
return sum(w * f for w, f in zip(weights, factors))
|
| 76 |
+
|
| 77 |
+
@dataclass
|
| 78 |
+
class ArchetypalStrand:
|
| 79 |
+
"""Symbolic DNA strand representing cultural genotype with enhanced metrics"""
|
| 80 |
+
name: str
|
| 81 |
+
symbolic_form: str # e.g., "Lion", "Sunburst"
|
| 82 |
+
temporal_depth: int # years in cultural record
|
| 83 |
+
spatial_distribution: float # 0-1 global prevalence
|
| 84 |
+
preservation_rate: float # 0-1 iconographic fidelity
|
| 85 |
+
quantum_coherence: float # 0-1 symbolic stability
|
| 86 |
+
cultural_penetration: float = 0.5 # 0-1, depth in cultural psyche
|
| 87 |
+
transformative_potential: float = 0.5 # 0-1, capacity for change
|
| 88 |
+
num_variants: int = 1 # Number of cultural variants
|
| 89 |
+
|
| 90 |
+
@property
|
| 91 |
+
def symbolic_strength(self) -> float:
|
| 92 |
+
"""Calculate overall archetypal strength with enhanced weighting"""
|
| 93 |
+
weights = [0.20, 0.20, 0.15, 0.15, 0.15, 0.15] # Enhanced weighting
|
| 94 |
+
factors = [
|
| 95 |
+
self.temporal_depth/10000,
|
| 96 |
+
self.spatial_distribution,
|
| 97 |
+
self.preservation_rate,
|
| 98 |
+
self.quantum_coherence,
|
| 99 |
+
self.cultural_penetration,
|
| 100 |
+
self.transformative_potential
|
| 101 |
+
]
|
| 102 |
+
return min(1.0, sum(w * f for w, f in zip(weights, factors)))
|
| 103 |
+
|
| 104 |
+
@property
|
| 105 |
+
def cultural_resilience(self) -> float:
|
| 106 |
+
"""Calculate resilience against cultural erosion"""
|
| 107 |
+
return (self.preservation_rate * 0.4 +
|
| 108 |
+
self.temporal_depth/10000 * 0.3 +
|
| 109 |
+
self.quantum_coherence * 0.3)
|
| 110 |
+
|
| 111 |
+
class ConsciousnessTechnology:
|
| 112 |
+
"""Advanced neuro-symbolic interface technology with state tracking"""
|
| 113 |
+
|
| 114 |
+
def __init__(self, name: str, archetype: ArchetypalStrand,
|
| 115 |
+
neural_correlate: NeuralCorrelate, quantum_sig: QuantumSignature):
|
| 116 |
+
self.name = name
|
| 117 |
+
self.archetype = archetype
|
| 118 |
+
self.neural_correlate = neural_correlate
|
| 119 |
+
self.quantum_signature = quantum_sig
|
| 120 |
+
self.activation_history = []
|
| 121 |
+
self.performance_metrics = {
|
| 122 |
+
'avg_activation_intensity': 0.0,
|
| 123 |
+
'successful_activations': 0,
|
| 124 |
+
'neural_efficiency_trend': [],
|
| 125 |
+
'quantum_coherence_trend': []
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
def activate(self, intensity: float = 1.0, duration: float = 1.0) -> Dict[str, Any]:
|
| 129 |
+
"""Advanced activation with duration and performance tracking"""
|
| 130 |
+
# Calculate dynamic effects based on duration and intensity
|
| 131 |
+
neural_boost = math.tanh(intensity * duration)
|
| 132 |
+
quantum_amplification = intensity * (1 - math.exp(-duration))
|
| 133 |
+
|
| 134 |
+
activation = {
|
| 135 |
+
'timestamp': datetime.now(),
|
| 136 |
+
'archetype': self.archetype.name,
|
| 137 |
+
'intensity': intensity,
|
| 138 |
+
'duration': duration,
|
| 139 |
+
'neural_state': self.neural_correlate.frequency_band,
|
| 140 |
+
'neural_efficiency': self.neural_correlate.neural_efficiency * (1 + neural_boost),
|
| 141 |
+
'quantum_coherence': self.quantum_signature.coherence * (1 + quantum_amplification),
|
| 142 |
+
'qualia_experience': self.quantum_signature.qualia_vector * intensity,
|
| 143 |
+
'entanglement_level': self.quantum_signature.entanglement * intensity,
|
| 144 |
+
'performance_score': self._calculate_performance_score(intensity, duration)
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
self.activation_history.append(activation)
|
| 148 |
+
self._update_performance_metrics(activation)
|
| 149 |
+
return activation
|
| 150 |
+
|
| 151 |
+
def _calculate_performance_score(self, intensity: float, duration: float) -> float:
|
| 152 |
+
"""Calculate activation performance score"""
|
| 153 |
+
neural_component = self.neural_correlate.neural_efficiency * intensity
|
| 154 |
+
quantum_component = self.quantum_signature.coherence * duration
|
| 155 |
+
return (neural_component * 0.6 + quantum_component * 0.4)
|
| 156 |
+
|
| 157 |
+
def _update_performance_metrics(self, activation: Dict):
|
| 158 |
+
"""Update long-term performance tracking"""
|
| 159 |
+
self.performance_metrics['successful_activations'] += 1
|
| 160 |
+
self.performance_metrics['avg_activation_intensity'] = (
|
| 161 |
+
self.performance_metrics['avg_activation_intensity'] * 0.9 +
|
| 162 |
+
activation['intensity'] * 0.1
|
| 163 |
+
)
|
| 164 |
+
self.performance_metrics['neural_efficiency_trend'].append(
|
| 165 |
+
activation['neural_efficiency']
|
| 166 |
+
)
|
| 167 |
+
self.performance_metrics['quantum_coherence_trend'].append(
|
| 168 |
+
activation['quantum_coherence']
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
def get_performance_report(self) -> Dict[str, Any]:
|
| 172 |
+
"""Generate comprehensive performance analysis"""
|
| 173 |
+
trends = self.performance_metrics
|
| 174 |
+
if len(trends['neural_efficiency_trend']) > 1:
|
| 175 |
+
neural_slope = stats.linregress(
|
| 176 |
+
range(len(trends['neural_efficiency_trend'])),
|
| 177 |
+
trends['neural_efficiency_trend']
|
| 178 |
+
).slope
|
| 179 |
+
quantum_slope = stats.linregress(
|
| 180 |
+
range(len(trends['quantum_coherence_trend'])),
|
| 181 |
+
trends['quantum_coherence_trend']
|
| 182 |
+
).slope
|
| 183 |
+
else:
|
| 184 |
+
neural_slope = quantum_slope = 0.0
|
| 185 |
+
|
| 186 |
+
return {
|
| 187 |
+
'total_activations': trends['successful_activations'],
|
| 188 |
+
'average_intensity': trends['avg_activation_intensity'],
|
| 189 |
+
'neural_efficiency_trend': neural_slope,
|
| 190 |
+
'quantum_coherence_trend': quantum_slope,
|
| 191 |
+
'overall_health': (trends['avg_activation_intensity'] * 0.4 +
|
| 192 |
+
(1 if neural_slope > 0 else 0) * 0.3 +
|
| 193 |
+
(1 if quantum_slope > 0 else 0) * 0.3)
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
class CulturalPhylogenetics:
|
| 197 |
+
"""Advanced evolutionary analysis of symbolic DNA with Bayesian methods"""
|
| 198 |
+
|
| 199 |
+
def __init__(self):
|
| 200 |
+
self.cladograms = {}
|
| 201 |
+
self.ancestral_reconstructions = {}
|
| 202 |
+
self.symbolic_traits = [
|
| 203 |
+
"solar_association", "predatory_nature", "sovereignty",
|
| 204 |
+
"transcendence", "protection", "wisdom", "chaos", "creation",
|
| 205 |
+
"fertility", "destruction", "renewal", "guidance"
|
| 206 |
+
]
|
| 207 |
+
self.trait_correlations = np.eye(len(self.symbolic_traits))
|
| 208 |
+
|
| 209 |
+
def build_cladogram(self, archetypes: List[ArchetypalStrand],
|
| 210 |
+
trait_matrix: np.ndarray,
|
| 211 |
+
method: str = 'bayesian') -> nx.DiGraph:
|
| 212 |
+
"""Build evolutionary tree using multiple methods"""
|
| 213 |
+
|
| 214 |
+
if method == 'bayesian':
|
| 215 |
+
return self._bayesian_phylogeny(archetypes, trait_matrix)
|
| 216 |
+
elif method == 'neighbor_joining':
|
| 217 |
+
return self._neighbor_joining(archetypes, trait_matrix)
|
| 218 |
+
else: # minimum_spanning_tree
|
| 219 |
+
return self._minimum_spanning_tree(archetypes, trait_matrix)
|
| 220 |
+
|
| 221 |
+
def _bayesian_phylogeny(self, archetypes: List[ArchetypalStrand],
|
| 222 |
+
trait_matrix: np.ndarray) -> nx.DiGraph:
|
| 223 |
+
"""Bayesian phylogenetic inference"""
|
| 224 |
+
G = nx.DiGraph()
|
| 225 |
+
n = len(archetypes)
|
| 226 |
+
|
| 227 |
+
# Calculate Bayesian posterior probabilities for relationships
|
| 228 |
+
for i, arch1 in enumerate(archetypes):
|
| 229 |
+
for j, arch2 in enumerate(archetypes):
|
| 230 |
+
if i != j:
|
| 231 |
+
# Bayesian distance incorporating prior knowledge
|
| 232 |
+
likelihood = math.exp(-spatial.distance.euclidean(
|
| 233 |
+
trait_matrix[i], trait_matrix[j]
|
| 234 |
+
))
|
| 235 |
+
prior = self._calculate_phylogenetic_prior(arch1, arch2)
|
| 236 |
+
posterior = likelihood * prior
|
| 237 |
+
|
| 238 |
+
G.add_edge(arch1.name, arch2.name,
|
| 239 |
+
weight=1/posterior, # Convert to distance
|
| 240 |
+
probability=posterior)
|
| 241 |
+
|
| 242 |
+
# Find maximum likelihood tree
|
| 243 |
+
mst = nx.minimum_spanning_tree(G, weight='weight')
|
| 244 |
+
self.cladograms[tuple(a.name for a in archetypes)] = mst
|
| 245 |
+
return mst
|
| 246 |
+
|
| 247 |
+
def _neighbor_joining(self, archetypes: List[ArchetypalStrand],
|
| 248 |
+
trait_matrix: np.ndarray) -> nx.DiGraph:
|
| 249 |
+
"""Neighbor-joining algorithm for phylogenetic reconstruction"""
|
| 250 |
+
# Simplified implementation
|
| 251 |
+
G = nx.DiGraph()
|
| 252 |
+
distances = spatial.distance.pdist(trait_matrix, metric='euclidean')
|
| 253 |
+
distance_matrix = spatial.distance.squareform(distances)
|
| 254 |
+
|
| 255 |
+
# Build tree using hierarchical clustering
|
| 256 |
+
from scipy.cluster import hierarchy
|
| 257 |
+
Z = hierarchy.linkage(distance_matrix, method='average')
|
| 258 |
+
|
| 259 |
+
# Convert to networkx graph
|
| 260 |
+
# This is a simplified conversion - full NJ would be more complex
|
| 261 |
+
for i in range(len(archetypes)-1):
|
| 262 |
+
G.add_edge(archetypes[int(Z[i,0])].name,
|
| 263 |
+
archetypes[int(Z[i,1])].name,
|
| 264 |
+
weight=Z[i,2])
|
| 265 |
+
|
| 266 |
+
self.cladograms[tuple(a.name for a in archetypes)] = G
|
| 267 |
+
return G
|
| 268 |
+
|
| 269 |
+
def _minimum_spanning_tree(self, archetypes: List[ArchetypalStrand],
|
| 270 |
+
trait_matrix: np.ndarray) -> nx.DiGraph:
|
| 271 |
+
"""Traditional minimum spanning tree approach"""
|
| 272 |
+
G = nx.Graph()
|
| 273 |
+
|
| 274 |
+
for i, arch1 in enumerate(archetypes):
|
| 275 |
+
for j, arch2 in enumerate(archetypes):
|
| 276 |
+
if i != j:
|
| 277 |
+
distance = spatial.distance.euclidean(
|
| 278 |
+
trait_matrix[i], trait_matrix[j]
|
| 279 |
+
)
|
| 280 |
+
G.add_edge(arch1.name, arch2.name, weight=distance)
|
| 281 |
+
|
| 282 |
+
mst = nx.minimum_spanning_tree(G)
|
| 283 |
+
self.cladograms[tuple(a.name for a in archetypes)] = mst
|
| 284 |
+
return mst
|
| 285 |
+
|
| 286 |
+
def _calculate_phylogenetic_prior(self, arch1: ArchetypalStrand,
|
| 287 |
+
arch2: ArchetypalStrand) -> float:
|
| 288 |
+
"""Calculate Bayesian prior based on temporal and spatial overlap"""
|
| 289 |
+
temporal_overlap = 1 - abs(arch1.temporal_depth - arch2.temporal_depth) / 10000
|
| 290 |
+
spatial_similarity = 1 - abs(arch1.spatial_distribution - arch2.spatial_distribution)
|
| 291 |
+
return (temporal_overlap * 0.6 + spatial_similarity * 0.4)
|
| 292 |
+
|
| 293 |
+
def find_common_ancestor(self, archetype1: str, archetype2: str,
|
| 294 |
+
method: str = 'lca') -> Optional[str]:
|
| 295 |
+
"""Find most recent common ancestor using multiple methods"""
|
| 296 |
+
for cladogram in self.cladograms.values():
|
| 297 |
+
if archetype1 in cladogram and archetype2 in cladogram:
|
| 298 |
+
try:
|
| 299 |
+
if method == 'lca':
|
| 300 |
+
# Use networkx's LCA for rooted trees
|
| 301 |
+
if hasattr(nx, 'lowest_common_ancestor'):
|
| 302 |
+
return nx.lowest_common_ancestor(cladogram, archetype1, archetype2)
|
| 303 |
+
else:
|
| 304 |
+
# Fallback method
|
| 305 |
+
path1 = nx.shortest_path(cladogram, source=list(cladogram.nodes())[0], target=archetype1)
|
| 306 |
+
path2 = nx.shortest_path(cladogram, source=list(cladogram.nodes())[0], target=archetype2)
|
| 307 |
+
common = [n for n in path1 if n in path2]
|
| 308 |
+
return common[-1] if common else None
|
| 309 |
+
else:
|
| 310 |
+
# Shortest path midpoint
|
| 311 |
+
path = nx.shortest_path(cladogram, archetype1, archetype2)
|
| 312 |
+
return path[len(path)//2] if len(path) > 2 else path[0]
|
| 313 |
+
except (nx.NetworkXNoPath, nx.NodeNotFound):
|
| 314 |
+
continue
|
| 315 |
+
return None
|
| 316 |
+
|
| 317 |
+
def calculate_evolutionary_rate(self, archetype: str) -> float:
|
| 318 |
+
"""Calculate evolutionary rate of an archetype"""
|
| 319 |
+
# Simplified evolutionary rate calculation
|
| 320 |
+
for cladogram in self.cladograms.values():
|
| 321 |
+
if archetype in cladogram:
|
| 322 |
+
# Sum of branch lengths from root
|
| 323 |
+
try:
|
| 324 |
+
root = [n for n in cladogram.nodes() if cladogram.in_degree(n) == 0][0]
|
| 325 |
+
path = nx.shortest_path(cladogram, root, archetype)
|
| 326 |
+
total_length = sum(cladogram[u][v]['weight'] for u, v in zip(path[:-1], path[1:]))
|
| 327 |
+
return total_length / len(path) if path else 0.0
|
| 328 |
+
except (IndexError, nx.NetworkXNoPath):
|
| 329 |
+
continue
|
| 330 |
+
return 0.0
|
| 331 |
+
|
| 332 |
+
class GeospatialArchetypalMapper:
|
| 333 |
+
"""Advanced GIS-based symbolic distribution analysis with temporal dynamics"""
|
| 334 |
+
|
| 335 |
+
def __init__(self):
|
| 336 |
+
self.archetype_distributions = {}
|
| 337 |
+
self.mutation_hotspots = []
|
| 338 |
+
self.diffusion_models = {}
|
| 339 |
+
self.spatial_correlations = {}
|
| 340 |
+
|
| 341 |
+
def add_archetype_distribution(self, archetype: str,
|
| 342 |
+
coordinates: List[Tuple[float, float]],
|
| 343 |
+
intensity: List[float],
|
| 344 |
+
epoch: str,
|
| 345 |
+
uncertainty: List[float] = None):
|
| 346 |
+
"""Add spatial data with uncertainty estimates"""
|
| 347 |
+
key = f"{archetype}_{epoch}"
|
| 348 |
+
|
| 349 |
+
if uncertainty is None:
|
| 350 |
+
uncertainty = [0.1] * len(coordinates) # Default uncertainty
|
| 351 |
+
|
| 352 |
+
self.archetype_distributions[key] = {
|
| 353 |
+
'coordinates': coordinates,
|
| 354 |
+
'intensity': intensity,
|
| 355 |
+
'uncertainty': uncertainty,
|
| 356 |
+
'epoch': epoch,
|
| 357 |
+
'centroid': self._calculate_centroid(coordinates, intensity),
|
| 358 |
+
'spread': self._calculate_spatial_spread(coordinates, intensity),
|
| 359 |
+
'density': self._calculate_point_density(coordinates, intensity)
|
| 360 |
+
}
|
| 361 |
+
|
| 362 |
+
self._update_diffusion_model(archetype, coordinates, intensity, epoch)
|
| 363 |
+
|
| 364 |
+
def _calculate_centroid(self, coords: List[Tuple], intensities: List[float]) -> Tuple[float, float]:
|
| 365 |
+
"""Calculate intensity-weighted centroid with robustness"""
|
| 366 |
+
if not coords:
|
| 367 |
+
return (0, 0)
|
| 368 |
+
try:
|
| 369 |
+
weighted_lat = sum(c[0] * i for c, i in zip(coords, intensities)) / sum(intensities)
|
| 370 |
+
weighted_lon = sum(c[1] * i for c, i in zip(coords, intensities)) / sum(intensities)
|
| 371 |
+
return (weighted_lat, weighted_lon)
|
| 372 |
+
except ZeroDivisionError:
|
| 373 |
+
return (np.mean([c[0] for c in coords]), np.mean([c[1] for c in coords]))
|
| 374 |
+
|
| 375 |
+
def _calculate_spatial_spread(self, coords: List[Tuple], intensities: List[float]) -> float:
|
| 376 |
+
"""Calculate spatial spread (standard distance)"""
|
| 377 |
+
if len(coords) < 2:
|
| 378 |
+
return 0.0
|
| 379 |
+
centroid = self._calculate_centroid(coords, intensities)
|
| 380 |
+
distances = [math.sqrt((c[0]-centroid[0])**2 + (c[1]-centroid[1])**2) for c in coords]
|
| 381 |
+
return np.std(distances)
|
| 382 |
+
|
| 383 |
+
def _calculate_point_density(self, coords: List[Tuple], intensities: List[float]) -> float:
|
| 384 |
+
"""Calculate point density metric"""
|
| 385 |
+
if not coords:
|
| 386 |
+
return 0.0
|
| 387 |
+
spread = self._calculate_spatial_spread(coords, intensities)
|
| 388 |
+
total_intensity = sum(intensities)
|
| 389 |
+
return total_intensity / (spread + 1e-10) # Avoid division by zero
|
| 390 |
+
|
| 391 |
+
def _update_diffusion_model(self, archetype: str, coords: List[Tuple],
|
| 392 |
+
intensities: List[float], epoch: str):
|
| 393 |
+
"""Update diffusion model for archetype spread"""
|
| 394 |
+
if archetype not in self.diffusion_models:
|
| 395 |
+
self.diffusion_models[archetype] = {}
|
| 396 |
+
|
| 397 |
+
centroid = self._calculate_centroid(coords, intensities)
|
| 398 |
+
spread = self._calculate_spatial_spread(coords, intensities)
|
| 399 |
+
|
| 400 |
+
self.diffusion_models[archetype][epoch] = {
|
| 401 |
+
'centroid': centroid,
|
| 402 |
+
'spread': spread,
|
| 403 |
+
'intensity_sum': sum(intensities),
|
| 404 |
+
'point_count': len(coords)
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
def detect_mutation_hotspots(self, threshold: float = 0.8,
|
| 408 |
+
method: str = 'variance'):
|
| 409 |
+
"""Advanced hotspot detection using multiple methods"""
|
| 410 |
+
self.mutation_hotspots.clear()
|
| 411 |
+
|
| 412 |
+
for key, data in self.archetype_distributions.items():
|
| 413 |
+
if method == 'variance':
|
| 414 |
+
score = np.var(data['intensity'])
|
| 415 |
+
elif method == 'spatial_autocorrelation':
|
| 416 |
+
score = self._calculate_morans_i(data['coordinates'], data['intensity'])
|
| 417 |
+
elif method == 'getis_ord':
|
| 418 |
+
score = self._calculate_getis_ord(data['coordinates'], data['intensity'])
|
| 419 |
+
else:
|
| 420 |
+
score = np.var(data['intensity'])
|
| 421 |
+
|
| 422 |
+
if score > threshold:
|
| 423 |
+
self.mutation_hotspots.append({
|
| 424 |
+
'location': key,
|
| 425 |
+
'score': score,
|
| 426 |
+
'method': method,
|
| 427 |
+
'epoch': data['epoch'],
|
| 428 |
+
'centroid': data['centroid'],
|
| 429 |
+
'significance': self._calculate_hotspot_significance(score, threshold)
|
| 430 |
+
})
|
| 431 |
+
|
| 432 |
+
# Sort by significance
|
| 433 |
+
self.mutation_hotspots.sort(key=lambda x: x['significance'], reverse=True)
|
| 434 |
+
|
| 435 |
+
def _calculate_morans_i(self, coords: List[Tuple], intensities: List[float]) -> float:
|
| 436 |
+
"""Calculate Moran's I for spatial autocorrelation (simplified)"""
|
| 437 |
+
if len(coords) < 2:
|
| 438 |
+
return 0.0
|
| 439 |
+
# Simplified implementation
|
| 440 |
+
centroid = self._calculate_centroid(coords, intensities)
|
| 441 |
+
deviations = [i - np.mean(intensities) for i in intensities]
|
| 442 |
+
spatial_lag = sum(d1 * d2 for d1 in deviations for d2 in deviations) / len(deviations)**2
|
| 443 |
+
return abs(spatial_lag) # Simplified
|
| 444 |
+
|
| 445 |
+
def _calculate_getis_ord(self, coords: List[Tuple], intensities: List[float]) -> float:
|
| 446 |
+
"""Calculate Getis-Ord Gi* statistic (simplified)"""
|
| 447 |
+
if len(coords) < 2:
|
| 448 |
+
return 0.0
|
| 449 |
+
# Simplified hot spot detection
|
| 450 |
+
mean_intensity = np.mean(intensities)
|
| 451 |
+
std_intensity = np.std(intensities)
|
| 452 |
+
if std_intensity == 0:
|
| 453 |
+
return 0.0
|
| 454 |
+
return max(0, (max(intensities) - mean_intensity) / std_intensity)
|
| 455 |
+
|
| 456 |
+
def _calculate_hotspot_significance(self, score: float, threshold: float) -> float:
|
| 457 |
+
"""Calculate statistical significance of hotspot"""
|
| 458 |
+
return min(1.0, (score - threshold) / (1 - threshold)) if score > threshold else 0.0
|
| 459 |
+
|
| 460 |
+
def predict_archetype_spread(self, archetype: str, future_epochs: int = 5) -> List[Dict]:
|
| 461 |
+
"""Predict future spatial distribution"""
|
| 462 |
+
if archetype not in self.diffusion_models:
|
| 463 |
+
return []
|
| 464 |
+
|
| 465 |
+
epochs = sorted(self.diffusion_models[archetype].keys())
|
| 466 |
+
if len(epochs) < 2:
|
| 467 |
+
return []
|
| 468 |
+
|
| 469 |
+
# Simple linear extrapolation of centroid movement and spread
|
| 470 |
+
recent_data = [self.diffusion_models[archetype][e] for e in epochs[-2:]]
|
| 471 |
+
centroid_drift = (
|
| 472 |
+
recent_data[1]['centroid'][0] - recent_data[0]['centroid'][0],
|
| 473 |
+
recent_data[1]['centroid'][1] - recent_data[0]['centroid'][1]
|
| 474 |
+
)
|
| 475 |
+
spread_growth = recent_data[1]['spread'] - recent_data[0]['spread']
|
| 476 |
+
|
| 477 |
+
predictions = []
|
| 478 |
+
current_centroid = recent_data[1]['centroid']
|
| 479 |
+
current_spread = recent_data[1]['spread']
|
| 480 |
+
|
| 481 |
+
for i in range(1, future_epochs + 1):
|
| 482 |
+
predicted_centroid = (
|
| 483 |
+
current_centroid[0] + centroid_drift[0] * i,
|
| 484 |
+
current_centroid[1] + centroid_drift[1] * i
|
| 485 |
+
)
|
| 486 |
+
predicted_spread = current_spread + spread_growth * i
|
| 487 |
+
|
| 488 |
+
predictions.append({
|
| 489 |
+
'epoch': f'future_{i}',
|
| 490 |
+
'predicted_centroid': predicted_centroid,
|
| 491 |
+
'predicted_spread': predicted_spread,
|
| 492 |
+
'confidence': max(0, 1.0 - i * 0.2) # Decreasing confidence
|
| 493 |
+
})
|
| 494 |
+
|
| 495 |
+
return predictions
|
| 496 |
+
|
| 497 |
+
class ArchetypalEntropyIndex:
|
| 498 |
+
"""Advanced measurement of symbolic degradation and mutation rates"""
|
| 499 |
+
|
| 500 |
+
def __init__(self):
|
| 501 |
+
self.entropy_history = {}
|
| 502 |
+
self.complexity_metrics = {}
|
| 503 |
+
self.stability_thresholds = {
|
| 504 |
+
'low_entropy': 0.3,
|
| 505 |
+
'medium_entropy': 0.6,
|
| 506 |
+
'high_entropy': 0.8
|
| 507 |
+
}
|
| 508 |
+
|
| 509 |
+
def calculate_entropy(self, archetype: ArchetypalStrand,
|
| 510 |
+
historical_forms: List[str],
|
| 511 |
+
meaning_shifts: List[float],
|
| 512 |
+
contextual_factors: Dict[str, float] = None) -> Dict[str, float]:
|
| 513 |
+
"""Advanced entropy calculation with multiple dimensions"""
|
| 514 |
+
|
| 515 |
+
if contextual_factors is None:
|
| 516 |
+
contextual_factors = {
|
| 517 |
+
'cultural_turbulence': 0.5,
|
| 518 |
+
'technological_disruption': 0.5,
|
| 519 |
+
'social_volatility': 0.5
|
| 520 |
+
}
|
| 521 |
+
|
| 522 |
+
# Form entropy (morphological changes with complexity weighting)
|
| 523 |
+
if len(historical_forms) > 1:
|
| 524 |
+
form_complexity = self._calculate_form_complexity(historical_forms)
|
| 525 |
+
form_changes = len(set(historical_forms)) / len(historical_forms)
|
| 526 |
+
form_entropy = form_changes * (1 + form_complexity * 0.5)
|
| 527 |
+
else:
|
| 528 |
+
form_entropy = 0
|
| 529 |
+
form_complexity = 0
|
| 530 |
+
|
| 531 |
+
# Meaning entropy (semantic drift with contextual sensitivity)
|
| 532 |
+
meaning_entropy = np.std(meaning_shifts) if meaning_shifts else 0
|
| 533 |
+
contextual_sensitivity = sum(contextual_factors.values()) / len(contextual_factors)
|
| 534 |
+
meaning_entropy_adj = meaning_entropy * (1 + contextual_sensitivity * 0.3)
|
| 535 |
+
|
| 536 |
+
# Structural entropy (internal consistency)
|
| 537 |
+
structural_entropy = self._calculate_structural_entropy(archetype, historical_forms)
|
| 538 |
+
|
| 539 |
+
# Combined entropy scores
|
| 540 |
+
total_entropy = (form_entropy * 0.4 +
|
| 541 |
+
meaning_entropy_adj * 0.4 +
|
| 542 |
+
structural_entropy * 0.2)
|
| 543 |
+
|
| 544 |
+
# Stability classification
|
| 545 |
+
stability_level = self._classify_stability(total_entropy)
|
| 546 |
+
|
| 547 |
+
result = {
|
| 548 |
+
'total_entropy': total_entropy,
|
| 549 |
+
'form_entropy': form_entropy,
|
| 550 |
+
'meaning_entropy': meaning_entropy_adj,
|
| 551 |
+
'structural_entropy': structural_entropy,
|
| 552 |
+
'form_complexity': form_complexity,
|
| 553 |
+
'stability_level': stability_level,
|
| 554 |
+
'mutation_risk': self._calculate_mutation_risk(total_entropy, contextual_factors),
|
| 555 |
+
'resilience_score': 1 - total_entropy
|
| 556 |
+
}
|
| 557 |
+
|
| 558 |
+
self.entropy_history[archetype.name] = {
|
| 559 |
+
**result,
|
| 560 |
+
'contextual_factors': contextual_factors,
|
| 561 |
+
'last_updated': datetime.now(),
|
| 562 |
+
'historical_trend': self._update_historical_trend(archetype.name, total_entropy)
|
| 563 |
+
}
|
| 564 |
+
|
| 565 |
+
self.complexity_metrics[archetype.name] = form_complexity
|
| 566 |
+
|
| 567 |
+
return result
|
| 568 |
+
|
| 569 |
+
def _calculate_form_complexity(self, forms: List[str]) -> float:
|
| 570 |
+
"""Calculate complexity of form variations"""
|
| 571 |
+
if not forms:
|
| 572 |
+
return 0.0
|
| 573 |
+
|
| 574 |
+
# Simple complexity metric based on variation and length
|
| 575 |
+
avg_length = np.mean([len(f) for f in forms])
|
| 576 |
+
variation_ratio = len(set(forms)) / len(forms)
|
| 577 |
+
|
| 578 |
+
return min(1.0, (avg_length / 100 * 0.3 + variation_ratio * 0.7))
|
| 579 |
+
|
| 580 |
+
def _calculate_structural_entropy(self, archetype: ArchetypalStrand,
|
| 581 |
+
forms: List[str]) -> float:
|
| 582 |
+
"""Calculate structural entropy based on internal consistency"""
|
| 583 |
+
# Measure how well the archetype maintains structural integrity
|
| 584 |
+
coherence_penalty = 1 - archetype.quantum_coherence
|
| 585 |
+
preservation_penalty = 1 - archetype.preservation_rate
|
| 586 |
+
|
| 587 |
+
return (coherence_penalty * 0.6 + preservation_penalty * 0.4)
|
| 588 |
+
|
| 589 |
+
def _classify_stability(self, entropy: float) -> str:
|
| 590 |
+
"""Classify archetype stability level"""
|
| 591 |
+
if entropy <= self.stability_thresholds['low_entropy']:
|
| 592 |
+
return 'high_stability'
|
| 593 |
+
elif entropy <= self.stability_thresholds['medium_entropy']:
|
| 594 |
+
return 'medium_stability'
|
| 595 |
+
elif entropy <= self.stability_thresholds['high_entropy']:
|
| 596 |
+
return 'low_stability'
|
| 597 |
+
else:
|
| 598 |
+
return 'critical_instability'
|
| 599 |
+
|
| 600 |
+
def _calculate_mutation_risk(self, entropy: float,
|
| 601 |
+
contextual_factors: Dict[str, float]) -> float:
|
| 602 |
+
"""Calculate risk of significant mutation"""
|
| 603 |
+
base_risk = entropy
|
| 604 |
+
contextual_risk = sum(contextual_factors.values()) / len(contextual_factors)
|
| 605 |
+
|
| 606 |
+
return min(1.0, base_risk * 0.7 + contextual_risk * 0.3)
|
| 607 |
+
|
| 608 |
+
def _update_historical_trend(self, archetype_name: str, current_entropy: float) -> List[float]:
|
| 609 |
+
"""Update historical entropy trend"""
|
| 610 |
+
if archetype_name not in self.entropy_history:
|
| 611 |
+
return [current_entropy]
|
| 612 |
+
|
| 613 |
+
current_trend = self.entropy_history[archetype_name].get('historical_trend', [])
|
| 614 |
+
current_trend.append(current_entropy)
|
| 615 |
+
|
| 616 |
+
# Keep only last 10 readings
|
| 617 |
+
return current_trend[-10:]
|
| 618 |
+
|
| 619 |
+
def get_high_entropy_archetypes(self, threshold: float = 0.7) -> List[Dict]:
|
| 620 |
+
"""Get archetypes with high mutation rates with detailed analysis"""
|
| 621 |
+
high_entropy = []
|
| 622 |
+
|
| 623 |
+
for name, data in self.entropy_history.items():
|
| 624 |
+
if data['total_entropy'] > threshold:
|
| 625 |
+
high_entropy.append({
|
| 626 |
+
'archetype': name,
|
| 627 |
+
'total_entropy': data['total_entropy'],
|
| 628 |
+
'stability_level': data['stability_level'],
|
| 629 |
+
'mutation_risk': data['mutation_risk'],
|
| 630 |
+
'resilience_score': data['resilience_score'],
|
| 631 |
+
'trend_direction': self._calculate_trend_direction(data['historical_trend'])
|
| 632 |
+
})
|
| 633 |
+
|
| 634 |
+
return sorted(high_entropy, key=lambda x: x['mutation_risk'], reverse=True)
|
| 635 |
+
|
| 636 |
+
def _calculate_trend_direction(self, trend: List[float]) -> str:
|
| 637 |
+
"""Calculate direction of entropy trend"""
|
| 638 |
+
if len(trend) < 2:
|
| 639 |
+
return 'stable'
|
| 640 |
+
|
| 641 |
+
slope = stats.linregress(range(len(trend)), trend).slope
|
| 642 |
+
|
| 643 |
+
if slope > 0.01:
|
| 644 |
+
return 'increasing'
|
| 645 |
+
elif slope < -0.01:
|
| 646 |
+
return 'decreasing'
|
| 647 |
+
else:
|
| 648 |
+
return 'stable'
|
| 649 |
+
|
| 650 |
+
def get_entropy_network(self) -> nx.Graph:
|
| 651 |
+
"""Build network of archetypes based on entropy correlations"""
|
| 652 |
+
G = nx.Graph()
|
| 653 |
+
|
| 654 |
+
archetype_names = list(self.entropy_history.keys())
|
| 655 |
+
|
| 656 |
+
for i, arch1 in enumerate(archetype_names):
|
| 657 |
+
for j, arch2 in enumerate(archetype_names):
|
| 658 |
+
if i < j: # Avoid duplicate pairs
|
| 659 |
+
# Calculate entropy correlation
|
| 660 |
+
trend1 = self.entropy_history[arch1].get('historical_trend', [0])
|
| 661 |
+
trend2 = self.entropy_history[arch2].get('historical_trend', [0])
|
| 662 |
+
|
| 663 |
+
# Pad with zeros if different lengths
|
| 664 |
+
max_len = max(len(trend1), len(trend2))
|
| 665 |
+
trend1_padded = trend1 + [0] * (max_len - len(trend1))
|
| 666 |
+
trend2_padded = trend2 + [0] * (max_len - len(trend2))
|
| 667 |
+
|
| 668 |
+
if len(trend1_padded) > 1:
|
| 669 |
+
correlation = np.corrcoef(trend1_padded, trend2_padded)[0,1]
|
| 670 |
+
if not np.isnan(correlation) and abs(correlation) > 0.3:
|
| 671 |
+
G.add_edge(arch1, arch2,
|
| 672 |
+
weight=abs(correlation),
|
| 673 |
+
correlation=correlation)
|
| 674 |
+
|
| 675 |
+
return G
|
| 676 |
+
|
| 677 |
+
class CrossCulturalResonanceMatrix:
|
| 678 |
+
"""Advanced comparison of archetypal strength across civilizations"""
|
| 679 |
+
|
| 680 |
+
def __init__(self):
|
| 681 |
+
self.civilization_data = {}
|
| 682 |
+
self.resonance_matrix = {}
|
| 683 |
+
self.cultural_clusters = {}
|
| 684 |
+
self.resonance_network = nx.Graph()
|
| 685 |
+
|
| 686 |
+
def add_civilization_archetype(self, civilization: str,
|
| 687 |
+
archetype: str,
|
| 688 |
+
strength: float,
|
| 689 |
+
neural_impact: float,
|
| 690 |
+
cultural_context: Dict[str, float] = None):
|
| 691 |
+
"""Add archetype data with cultural context"""
|
| 692 |
+
if civilization not in self.civilization_data:
|
| 693 |
+
self.civilization_data[civilization] = {}
|
| 694 |
+
|
| 695 |
+
if cultural_context is None:
|
| 696 |
+
cultural_context = {
|
| 697 |
+
'technological_level': 0.5,
|
| 698 |
+
'spiritual_emphasis': 0.5,
|
| 699 |
+
'individualism': 0.5,
|
| 700 |
+
'ecological_connection': 0.5
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
self.civilization_data[civilization][archetype] = {
|
| 704 |
+
'strength': strength,
|
| 705 |
+
'neural_impact': neural_impact,
|
| 706 |
+
'cultural_context': cultural_context,
|
| 707 |
+
'resonance_potential': self._calculate_resonance_potential(strength, neural_impact, cultural_context)
|
| 708 |
+
}
|
| 709 |
+
|
| 710 |
+
def _calculate_resonance_potential(self, strength: float,
|
| 711 |
+
neural_impact: float,
|
| 712 |
+
cultural_context: Dict[str, float]) -> float:
|
| 713 |
+
"""Calculate overall resonance potential"""
|
| 714 |
+
base_potential = (strength * 0.5 + neural_impact * 0.5)
|
| 715 |
+
cultural_modifier = sum(cultural_context.values()) / len(cultural_context)
|
| 716 |
+
|
| 717 |
+
return base_potential * (0.7 + cultural_modifier * 0.3)
|
| 718 |
+
|
| 719 |
+
def calculate_cross_resonance(self, arch1: str, arch2: str,
|
| 720 |
+
method: str = 'pearson') -> Dict[str, float]:
|
| 721 |
+
"""Calculate resonance between archetypes using multiple methods"""
|
| 722 |
+
strengths_1 = []
|
| 723 |
+
strengths_2 = []
|
| 724 |
+
neural_impacts_1 = []
|
| 725 |
+
neural_impacts_2 = []
|
| 726 |
+
|
| 727 |
+
for civ_data in self.civilization_data.values():
|
| 728 |
+
if arch1 in civ_data and arch2 in civ_data:
|
| 729 |
+
strengths_1.append(civ_data[arch1]['strength'])
|
| 730 |
+
strengths_2.append(civ_data[arch2]['strength'])
|
| 731 |
+
neural_impacts_1.append(civ_data[arch1]['neural_impact'])
|
| 732 |
+
neural_impacts_2.append(civ_data[arch2]['neural_impact'])
|
| 733 |
+
|
| 734 |
+
results = {}
|
| 735 |
+
|
| 736 |
+
if len(strengths_1) > 1:
|
| 737 |
+
if method == 'pearson':
|
| 738 |
+
strength_resonance = np.corrcoef(strengths_1, strengths_2)[0,1]
|
| 739 |
+
neural_resonance = np.corrcoef(neural_impacts_1, neural_impacts_2)[0,1]
|
| 740 |
+
elif method == 'spearman':
|
| 741 |
+
strength_resonance = stats.spearmanr(strengths_1, strengths_2)[0]
|
| 742 |
+
neural_resonance = stats.spearmanr(neural_impacts_1, neural_impacts_2)[0]
|
| 743 |
+
else: # cosine similarity
|
| 744 |
+
strength_resonance = 1 - spatial.distance.cosine(strengths_1, strengths_2)
|
| 745 |
+
neural_resonance = 1 - spatial.distance.cosine(neural_impacts_1, neural_impacts_2)
|
| 746 |
+
|
| 747 |
+
results = {
|
| 748 |
+
'strength_resonance': max(0, strength_resonance) if not np.isnan(strength_resonance) else 0,
|
| 749 |
+
'neural_resonance': max(0, neural_resonance) if not np.isnan(neural_resonance) else 0,
|
| 750 |
+
'overall_resonance': (max(0, strength_resonance) * 0.6 + max(0, neural_resonance) * 0.4)
|
| 751 |
+
}
|
| 752 |
+
else:
|
| 753 |
+
results = {
|
| 754 |
+
'strength_resonance': 0.0,
|
| 755 |
+
'neural_resonance': 0.0,
|
| 756 |
+
'overall_resonance': 0.0
|
| 757 |
+
}
|
| 758 |
+
|
| 759 |
+
return results
|
| 760 |
+
|
| 761 |
+
def build_resonance_network(self, threshold: float = 0.3) -> nx.Graph:
|
| 762 |
+
"""Build advanced resonance network with community detection"""
|
| 763 |
+
G = nx.Graph()
|
| 764 |
+
archetypes = set()
|
| 765 |
+
|
| 766 |
+
# Get all unique archetypes
|
| 767 |
+
for civ_data in self.civilization_data.values():
|
| 768 |
+
archetypes.update(civ_data.keys())
|
| 769 |
+
|
| 770 |
+
# Calculate resonances and build network
|
| 771 |
+
for arch1 in archetypes:
|
| 772 |
+
for arch2 in archetypes:
|
| 773 |
+
if arch1 != arch2:
|
| 774 |
+
resonance_data = self.calculate_cross_resonance(arch1, arch2)
|
| 775 |
+
overall_resonance = resonance_data['overall_resonance']
|
| 776 |
+
|
| 777 |
+
if overall_resonance > threshold:
|
| 778 |
+
G.add_edge(arch1, arch2,
|
| 779 |
+
weight=overall_resonance,
|
| 780 |
+
strength_resonance=resonance_data['strength_resonance'],
|
| 781 |
+
neural_resonance=resonance_data['neural_resonance'])
|
| 782 |
+
|
| 783 |
+
# Detect communities in the resonance network
|
| 784 |
+
if len(G.nodes()) > 0:
|
| 785 |
+
try:
|
| 786 |
+
communities = nx.algorithms.community.greedy_modularity_communities(G)
|
| 787 |
+
for i, community in enumerate(communities):
|
| 788 |
+
for node in community:
|
| 789 |
+
G.nodes[node]['community'] = i
|
| 790 |
+
self.cultural_clusters = {i: list(community) for i, community in enumerate(communities)}
|
| 791 |
+
except:
|
| 792 |
+
# Fallback if community detection fails
|
| 793 |
+
for node in G.nodes():
|
| 794 |
+
G.nodes[node]['community'] = 0
|
| 795 |
+
|
| 796 |
+
self.resonance_network = G
|
| 797 |
+
return G
|
| 798 |
+
|
| 799 |
+
def find_cultural_clusters(self) -> Dict[int, List[str]]:
|
| 800 |
+
"""Identify clusters of culturally resonant archetypes"""
|
| 801 |
+
if not self.cultural_clusters:
|
| 802 |
+
self.build_resonance_network()
|
| 803 |
+
return self.cultural_clusters
|
| 804 |
+
|
| 805 |
+
def calculate_civilization_similarity(self, civ1: str, civ2: str) -> float:
|
| 806 |
+
"""Calculate similarity between two civilizations"""
|
| 807 |
+
if civ1 not in self.civilization_data or civ2 not in self.civilization_data:
|
| 808 |
+
return 0.0
|
| 809 |
+
|
| 810 |
+
common_archetypes = set(self.civilization_data[civ1].keys()) & set(self.civilization_data[civ2].keys())
|
| 811 |
+
if not common_archetypes:
|
| 812 |
+
return 0.0
|
| 813 |
+
|
| 814 |
+
similarities = []
|
| 815 |
+
for arch in common_archetypes:
|
| 816 |
+
strength_sim = 1 - abs(self.civilization_data[civ1][arch]['strength'] -
|
| 817 |
+
self.civilization_data[civ2][arch]['strength'])
|
| 818 |
+
neural_sim = 1 - abs(self.civilization_data[civ1][arch]['neural_impact'] -
|
| 819 |
+
self.civilization_data[civ2][arch]['neural_impact'])
|
| 820 |
+
similarities.append((strength_sim + neural_sim) / 2)
|
| 821 |
+
|
| 822 |
+
return np.mean(similarities) if similarities else 0.0
|
| 823 |
+
|
| 824 |
+
def get_universal_archetypes(self, threshold: float = 0.7) -> List[str]:
|
| 825 |
+
"""Find archetypes present in most civilizations"""
|
| 826 |
+
civ_count = len(self.civilization_data)
|
| 827 |
+
if civ_count == 0:
|
| 828 |
+
return []
|
| 829 |
+
|
| 830 |
+
archetype_frequency = defaultdict(int)
|
| 831 |
+
for civ_data in self.civilization_data.values():
|
| 832 |
+
for arch in civ_data.keys():
|
| 833 |
+
archetype_frequency[arch] += 1
|
| 834 |
+
|
| 835 |
+
universal = [arch for arch, count in archetype_frequency.items()
|
| 836 |
+
if count / civ_count >= threshold]
|
| 837 |
+
return sorted(universal, key=lambda x: archetype_frequency[x], reverse=True)
|
| 838 |
+
|
| 839 |
+
class SymbolicMutationEngine:
|
| 840 |
+
"""Advanced prediction of archetype evolution under cultural pressure"""
|
| 841 |
+
|
| 842 |
+
def __init__(self):
|
| 843 |
+
self.transformation_rules = {
|
| 844 |
+
'weapon': ['tool', 'symbol', 'concept', 'algorithm'],
|
| 845 |
+
'physical': ['digital', 'virtual', 'neural', 'quantum'],
|
| 846 |
+
'individual': ['networked', 'collective', 'distributed', 'holographic'],
|
| 847 |
+
'concrete': ['abstract', 'algorithmic', 'quantum', 'consciousness_based'],
|
| 848 |
+
'hierarchical': ['networked', 'decentralized', 'rhizomatic', 'holonic']
|
| 849 |
+
}
|
| 850 |
+
|
| 851 |
+
self.pressure_vectors = {
|
| 852 |
+
'digitization': {
|
| 853 |
+
'intensity_range': (0.3, 0.9),
|
| 854 |
+
'preferred_transformations': ['physical->digital', 'concrete->algorithmic'],
|
| 855 |
+
'resistance_factors': ['cultural_traditionalism', 'technological_aversion']
|
| 856 |
+
},
|
| 857 |
+
'ecological_crisis': {
|
| 858 |
+
'intensity_range': (0.5, 1.0),
|
| 859 |
+
'preferred_transformations': ['individual->collective', 'weapon->tool'],
|
| 860 |
+
'resistance_factors': ['individualism', 'consumerism']
|
| 861 |
+
},
|
| 862 |
+
'quantum_awakening': {
|
| 863 |
+
'intensity_range': (0.2, 0.8),
|
| 864 |
+
'preferred_transformations': ['concrete->quantum', 'physical->neural'],
|
| 865 |
+
'resistance_factors': ['materialism', 'reductionism']
|
| 866 |
+
},
|
| 867 |
+
'neural_enhancement': {
|
| 868 |
+
'intensity_range': (0.4, 0.9),
|
| 869 |
+
'preferred_transformations': ['individual->networked', 'concrete->consciousness_based'],
|
| 870 |
+
'resistance_factors': ['biological_conservatism', 'ethical_concerns']
|
| 871 |
+
}
|
| 872 |
+
}
|
| 873 |
+
|
| 874 |
+
self.archetype_transformations = self._initialize_transformation_library()
|
| 875 |
+
|
| 876 |
+
def _initialize_transformation_library(self) -> Dict[str, Dict[str, List[str]]]:
|
| 877 |
+
"""Initialize comprehensive transformation library"""
|
| 878 |
+
return {
|
| 879 |
+
'spear': {
|
| 880 |
+
'physical->digital': ['laser_designator', 'cyber_spear', 'data_lance'],
|
| 881 |
+
'weapon->tool': ['guided_implement', 'precision_instrument', 'surgical_tool'],
|
| 882 |
+
'individual->networked': ['swarm_coordination', 'distributed_attack', 'coordinated_defense'],
|
| 883 |
+
'hierarchical->decentralized': ['peer_to_peer_defense', 'distributed_security']
|
| 884 |
+
},
|
| 885 |
+
'lion': {
|
| 886 |
+
'physical->digital': ['data_guardian', 'cyber_protector', 'algorithmic_sovereignty'],
|
| 887 |
+
'concrete->abstract': ['sovereignty_algorithm', 'leadership_principle', 'authority_pattern'],
|
| 888 |
+
'individual->collective': ['pride_consciousness', 'collective_strength', 'community_protection']
|
| 889 |
+
},
|
| 890 |
+
'sun': {
|
| 891 |
+
'concrete->quantum': ['consciousness_illumination', 'quantum_awareness', 'enlightenment_field'],
|
| 892 |
+
'physical->neural': ['neural_awakening', 'cognitive_illumination', 'mind_light'],
|
| 893 |
+
'individual->networked': ['collective_consciousness', 'global_awareness', 'networked_insight']
|
| 894 |
+
},
|
| 895 |
+
'serpent': {
|
| 896 |
+
'physical->digital': ['data_worm', 'algorithmic_subversion', 'cyber_undermining'],
|
| 897 |
+
'weapon->tool': ['transformative_agent', 'healing_serpent', 'regeneration_symbol'],
|
| 898 |
+
'concrete->quantum': ['quantum_chaos', 'nonlocal_influence', 'entanglement_manifestation']
|
| 899 |
+
}
|
| 900 |
+
}
|
| 901 |
+
|
| 902 |
+
def predict_mutation(self, current_archetype: str,
|
| 903 |
+
pressure_vector: str,
|
| 904 |
+
intensity: float = 0.5,
|
| 905 |
+
cultural_context: Dict[str, float] = None) -> List[Dict[str, Any]]:
|
| 906 |
+
"""Advanced mutation prediction with cultural context"""
|
| 907 |
+
|
| 908 |
+
if cultural_context is None:
|
| 909 |
+
cultural_context = {
|
| 910 |
+
'technological_acceptance': 0.5,
|
| 911 |
+
'spiritual_openness': 0.5,
|
| 912 |
+
'cultural_fluidity': 0.5,
|
| 913 |
+
'innovation_capacity': 0.5
|
| 914 |
+
}
|
| 915 |
+
|
| 916 |
+
if pressure_vector not in self.pressure_vectors:
|
| 917 |
+
return []
|
| 918 |
+
|
| 919 |
+
pressure_config = self.pressure_vectors[pressure_vector]
|
| 920 |
+
normalized_intensity = self._normalize_intensity(intensity, pressure_config['intensity_range'])
|
| 921 |
+
|
| 922 |
+
# Calculate transformation probabilities
|
| 923 |
+
transformations = []
|
| 924 |
+
for rule in pressure_config['preferred_transformations']:
|
| 925 |
+
possible_mutations = self._apply_transformation(current_archetype, rule)
|
| 926 |
+
|
| 927 |
+
for mutation in possible_mutations:
|
| 928 |
+
confidence = self._calculate_mutation_confidence(
|
| 929 |
+
mutation, normalized_intensity, cultural_context,
|
| 930 |
+
pressure_config['resistance_factors']
|
| 931 |
+
)
|
| 932 |
+
|
| 933 |
+
if confidence > 0.2: # Minimum confidence threshold
|
| 934 |
+
transformations.append({
|
| 935 |
+
'original_archetype': current_archetype,
|
| 936 |
+
'mutated_form': mutation,
|
| 937 |
+
'transformation_rule': rule,
|
| 938 |
+
'pressure_vector': pressure_vector,
|
| 939 |
+
'intensity': normalized_intensity,
|
| 940 |
+
'confidence': confidence,
|
| 941 |
+
'timeframe': self._estimate_timeframe(confidence, normalized_intensity),
|
| 942 |
+
'cultural_compatibility': self._assess_cultural_compatibility(mutation, cultural_context),
|
| 943 |
+
'potential_impact': self._estimate_impact(mutation, current_archetype)
|
| 944 |
+
})
|
| 945 |
+
|
| 946 |
+
# Sort by confidence and impact
|
| 947 |
+
return sorted(transformations,
|
| 948 |
+
key=lambda x: x['confidence'] * x['potential_impact'],
|
| 949 |
+
reverse=True)
|
| 950 |
+
|
| 951 |
+
def _normalize_intensity(self, intensity: float, intensity_range: Tuple[float, float]) -> float:
|
| 952 |
+
"""Normalize intensity within pressure-specific range"""
|
| 953 |
+
min_intensity, max_intensity = intensity_range
|
| 954 |
+
return min(1.0, max(0.0, (intensity - min_intensity) / (max_intensity - min_intensity)))
|
| 955 |
+
|
| 956 |
+
def _apply_transformation(self, archetype: str, rule: str) -> List[str]:
|
| 957 |
+
"""Apply transformation rule to archetype"""
|
| 958 |
+
if '->' not in rule:
|
| 959 |
+
return []
|
| 960 |
+
|
| 961 |
+
return self.archetype_transformations.get(archetype, {}).get(rule, [])
|
| 962 |
+
|
| 963 |
+
def _calculate_mutation_confidence(self, mutation: str,
|
| 964 |
+
intensity: float,
|
| 965 |
+
cultural_context: Dict[str, float],
|
| 966 |
+
resistance_factors: List[str]) -> float:
|
| 967 |
+
"""Calculate confidence in mutation prediction"""
|
| 968 |
+
base_confidence = 0.3 + intensity * 0.4
|
| 969 |
+
|
| 970 |
+
# Cultural compatibility adjustment
|
| 971 |
+
cultural_compatibility = sum(cultural_context.values()) / len(cultural_context)
|
| 972 |
+
cultural_boost = cultural_compatibility * 0.3
|
| 973 |
+
|
| 974 |
+
# Resistance penalty
|
| 975 |
+
resistance_penalty = sum(1 - cultural_context.get(factor, 0.5)
|
| 976 |
+
for factor in resistance_factors) / len(resistance_factors) * 0.2
|
| 977 |
+
|
| 978 |
+
final_confidence = base_confidence + cultural_boost - resistance_penalty
|
| 979 |
+
return min(1.0, max(0.0, final_confidence))
|
| 980 |
+
|
| 981 |
+
def _estimate_timeframe(self, confidence: float, intensity: float) -> str:
|
| 982 |
+
"""Estimate mutation timeframe"""
|
| 983 |
+
timeframe_score = confidence * intensity
|
| 984 |
+
|
| 985 |
+
if timeframe_score > 0.7:
|
| 986 |
+
return 'immediate (1-5 years)'
|
| 987 |
+
elif timeframe_score > 0.5:
|
| 988 |
+
return 'near_future (5-15 years)'
|
| 989 |
+
elif timeframe_score > 0.3:
|
| 990 |
+
return 'mid_future (15-30 years)'
|
| 991 |
+
else:
|
| 992 |
+
return 'distant_future (30+ years)'
|
| 993 |
+
|
| 994 |
+
def _assess_cultural_compatibility(self, mutation: str,
|
| 995 |
+
cultural_context: Dict[str, float]) -> float:
|
| 996 |
+
"""Assess cultural compatibility of mutation"""
|
| 997 |
+
# Simple assessment based on mutation characteristics
|
| 998 |
+
tech_keywords = ['digital', 'cyber', 'algorithm', 'data', 'network']
|
| 999 |
+
spirit_keywords = ['consciousness', 'awareness', 'enlightenment', 'quantum']
|
| 1000 |
+
innovation_keywords = ['transformative', 'novel', 'emerging', 'advanced']
|
| 1001 |
+
|
| 1002 |
+
tech_score = any(keyword in mutation.lower() for keyword in tech_keywords)
|
| 1003 |
+
spirit_score = any(keyword in mutation.lower() for keyword in spirit_keywords)
|
| 1004 |
+
innovation_score = any(keyword in mutation.lower() for keyword in innovation_keywords)
|
| 1005 |
+
|
| 1006 |
+
scores = []
|
| 1007 |
+
if tech_score:
|
| 1008 |
+
scores.append(cultural_context.get('technological_acceptance', 0.5))
|
| 1009 |
+
if spirit_score:
|
| 1010 |
+
scores.append(cultural_context.get('spiritual_openness', 0.5))
|
| 1011 |
+
if innovation_score:
|
| 1012 |
+
scores.append(cultural_context.get('innovation_capacity', 0.5))
|
| 1013 |
+
|
| 1014 |
+
return np.mean(scores) if scores else 0.5
|
| 1015 |
+
|
| 1016 |
+
def _estimate_impact(self, mutation: str, original: str) -> float:
|
| 1017 |
+
"""Estimate potential impact of mutation"""
|
| 1018 |
+
# Simple impact estimation based on transformation degree
|
| 1019 |
+
transformation_degree = self._calculate_transformation_degree(mutation, original)
|
| 1020 |
+
novelty_factor = len(mutation) / max(len(original), 1) # Simple novelty proxy
|
| 1021 |
+
|
| 1022 |
+
return min(1.0, transformation_degree * 0.7 + novelty_factor * 0.3)
|
| 1023 |
+
|
| 1024 |
+
def _calculate_transformation_degree(self, mutation: str, original: str) -> float:
|
| 1025 |
+
"""Calculate degree of transformation from original"""
|
| 1026 |
+
# Simple string-based similarity (could be enhanced with semantic analysis)
|
| 1027 |
+
if original.lower() in mutation.lower():
|
| 1028 |
+
return 0.3 # Low transformation
|
| 1029 |
+
else:
|
| 1030 |
+
return 0.8 # High transformation
|
| 1031 |
+
|
| 1032 |
+
def generate_mutation_scenarios(self, archetype: str,
|
| 1033 |
+
time_horizon: str = 'mid_future') -> Dict[str, Any]:
|
| 1034 |
+
"""Generate comprehensive mutation scenarios"""
|
| 1035 |
+
scenarios = {}
|
| 1036 |
+
|
| 1037 |
+
for pressure_vector in self.pressure_vectors.keys():
|
| 1038 |
+
mutations = self.predict_mutation(
|
| 1039 |
+
archetype, pressure_vector, intensity=0.7,
|
| 1040 |
+
cultural_context={
|
| 1041 |
+
'technological_acceptance': 0.7,
|
| 1042 |
+
'spiritual_openness': 0.6,
|
| 1043 |
+
'cultural_fluidity': 0.8,
|
| 1044 |
+
'innovation_capacity': 0.7
|
| 1045 |
+
}
|
| 1046 |
+
)
|
| 1047 |
+
|
| 1048 |
+
# Filter by timeframe
|
| 1049 |
+
timeframe_mutations = [m for m in mutations if m['timeframe'] == time_horizon]
|
| 1050 |
+
|
| 1051 |
+
if timeframe_mutations:
|
| 1052 |
+
scenarios[pressure_vector] = {
|
| 1053 |
+
'most_likely': max(timeframe_mutations, key=lambda x: x['confidence']),
|
| 1054 |
+
'all_possibilities': timeframe_mutations,
|
| 1055 |
+
'average_confidence': np.mean([m['confidence'] for m in timeframe_mutations]),
|
| 1056 |
+
'transformation_potential': np.mean([m['potential_impact'] for m in timeframe_mutations])
|
| 1057 |
+
}
|
| 1058 |
+
|
| 1059 |
+
return scenarios
|
| 1060 |
+
|
| 1061 |
+
class ArchetypalEntanglement:
|
| 1062 |
+
"""Quantum entanglement analysis between archetypes"""
|
| 1063 |
+
|
| 1064 |
+
def __init__(self):
|
| 1065 |
+
self.entanglement_network = nx.Graph()
|
| 1066 |
+
self.quantum_correlations = {}
|
| 1067 |
+
self.nonlocal_connections = {}
|
| 1068 |
+
|
| 1069 |
+
def calculate_quantum_entanglement(self, arch1: ArchetypalStrand,
|
| 1070 |
+
arch2: ArchetypalStrand,
|
| 1071 |
+
tech1: ConsciousnessTechnology,
|
| 1072 |
+
tech2: ConsciousnessTechnology) -> Dict[str, float]:
|
| 1073 |
+
"""Calculate quantum entanglement between archetypal consciousness fields"""
|
| 1074 |
+
|
| 1075 |
+
# Qualia similarity (cosine distance in experience space)
|
| 1076 |
+
qualia_similarity = 1 - tech1.quantum_signature.calculate_qualia_distance(
|
| 1077 |
+
tech2.quantum_signature
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
# Neural synchronization compatibility
|
| 1081 |
+
neural_sync = (tech1.neural_correlate.cross_hemispheric_sync +
|
| 1082 |
+
tech2.neural_correlate.cross_hemispheric_sync) / 2
|
| 1083 |
+
|
| 1084 |
+
# Resonance frequency harmony
|
| 1085 |
+
freq_harmony = 1 - abs(tech1.quantum_signature.resonance_frequency -
|
| 1086 |
+
tech2.quantum_signature.resonance_frequency) / 100
|
| 1087 |
+
|
| 1088 |
+
# Coherence alignment
|
| 1089 |
+
coherence_alignment = (tech1.quantum_signature.coherence +
|
| 1090 |
+
tech2.quantum_signature.coherence) / 2
|
| 1091 |
+
|
| 1092 |
+
# Entanglement probability (Bell inequality violation analog)
|
| 1093 |
+
entanglement_prob = (qualia_similarity * 0.3 +
|
| 1094 |
+
neural_sync * 0.25 +
|
| 1095 |
+
freq_harmony * 0.25 +
|
| 1096 |
+
coherence_alignment * 0.2)
|
| 1097 |
+
|
| 1098 |
+
result = {
|
| 1099 |
+
'entanglement_probability': entanglement_prob,
|
| 1100 |
+
'qualia_similarity': qualia_similarity,
|
| 1101 |
+
'neural_sync': neural_sync,
|
| 1102 |
+
'frequency_harmony': freq_harmony,
|
| 1103 |
+
'coherence_alignment': coherence_alignment,
|
| 1104 |
+
'nonlocal_correlation': tech1.quantum_signature.nonlocal_correlation *
|
| 1105 |
+
tech2.quantum_signature.nonlocal_correlation
|
| 1106 |
+
}
|
| 1107 |
+
|
| 1108 |
+
# Update entanglement network
|
| 1109 |
+
key = f"{arch1.name}_{arch2.name}"
|
| 1110 |
+
self.quantum_correlations[key] = result
|
| 1111 |
+
|
| 1112 |
+
if entanglement_prob > 0.5:
|
| 1113 |
+
self.entanglement_network.add_edge(
|
| 1114 |
+
arch1.name, arch2.name,
|
| 1115 |
+
weight=entanglement_prob,
|
| 1116 |
+
**result
|
| 1117 |
+
)
|
| 1118 |
+
|
| 1119 |
+
return result
|
| 1120 |
+
|
| 1121 |
+
def find_strongly_entangled_pairs(self, threshold: float = 0.7) -> List[Dict]:
|
| 1122 |
+
"""Find strongly entangled archetype pairs"""
|
| 1123 |
+
strong_pairs = []
|
| 1124 |
+
|
| 1125 |
+
for edge in self.entanglement_network.edges(data=True):
|
| 1126 |
+
if edge[2]['weight'] > threshold:
|
| 1127 |
+
strong_pairs.append({
|
| 1128 |
+
'archetype1': edge[0],
|
| 1129 |
+
'archetype2': edge[1],
|
| 1130 |
+
'entanglement_strength': edge[2]['weight'],
|
| 1131 |
+
'qualia_similarity': edge[2]['qualia_similarity'],
|
| 1132 |
+
'neural_sync': edge[2]['neural_sync']
|
| 1133 |
+
})
|
| 1134 |
+
|
| 1135 |
+
return sorted(strong_pairs, key=lambda x: x['entanglement_strength'], reverse=True)
|
| 1136 |
+
|
| 1137 |
+
def calculate_entanglement_entropy(self) -> float:
|
| 1138 |
+
"""Calculate von Neumann entropy of entanglement network"""
|
| 1139 |
+
if len(self.entanglement_network) == 0:
|
| 1140 |
+
return 0.0
|
| 1141 |
+
|
| 1142 |
+
# Simple graph entropy calculation
|
| 1143 |
+
degrees = [d for _, d in self.entanglement_network.degree(weight='weight')]
|
| 1144 |
+
total_degree = sum(degrees)
|
| 1145 |
+
|
| 1146 |
+
if total_degree == 0:
|
| 1147 |
+
return 0.0
|
| 1148 |
+
|
| 1149 |
+
probabilities = [d/total_degree for d in degrees]
|
| 1150 |
+
entropy = -sum(p * math.log(p) for p in probabilities if p > 0)
|
| 1151 |
+
|
| 1152 |
+
return entropy
|
| 1153 |
+
|
| 1154 |
+
class CollectiveConsciousnessMapper:
|
| 1155 |
+
"""Mapping of collective archetypal activation across populations"""
|
| 1156 |
+
|
| 1157 |
+
def __init__(self):
|
| 1158 |
+
self.collective_field = {}
|
| 1159 |
+
self.global_resonance_waves = {}
|
| 1160 |
+
self.consciousness_weather = {}
|
| 1161 |
+
self.temporal_patterns = {}
|
| 1162 |
+
|
| 1163 |
+
def update_collective_resonance(self, archetype: str,
|
| 1164 |
+
global_activation: float,
|
| 1165 |
+
regional_data: Dict[str, float] = None):
|
| 1166 |
+
"""Track collective archetypal activation across populations"""
|
| 1167 |
+
|
| 1168 |
+
current_time = datetime.now()
|
| 1169 |
+
|
| 1170 |
+
if archetype not in self.collective_field:
|
| 1171 |
+
self.collective_field[archetype] = {
|
| 1172 |
+
'activation_history': [],
|
| 1173 |
+
'regional_variations': {},
|
| 1174 |
+
'resonance_peaks': [],
|
| 1175 |
+
'stability_metric': 0.0
|
| 1176 |
+
}
|
| 1177 |
+
|
| 1178 |
+
# Update activation history
|
| 1179 |
+
self.collective_field[archetype]['activation_history'].append({
|
| 1180 |
+
'timestamp': current_time,
|
| 1181 |
+
'global_activation': global_activation,
|
| 1182 |
+
'regional_data': regional_data or {}
|
| 1183 |
+
})
|
| 1184 |
+
|
| 1185 |
+
# Keep only last 1000 readings
|
| 1186 |
+
if len(self.collective_field[archetype]['activation_history']) > 1000:
|
| 1187 |
+
self.collective_field[archetype]['activation_history'] = \
|
| 1188 |
+
self.collective_field[archetype]['activation_history'][-1000:]
|
| 1189 |
+
|
| 1190 |
+
# Update regional variations
|
| 1191 |
+
if regional_data:
|
| 1192 |
+
for region, activation in regional_data.items():
|
| 1193 |
+
if region not in self.collective_field[archetype]['regional_variations']:
|
| 1194 |
+
self.collective_field[archetype]['regional_variations'][region] = []
|
| 1195 |
+
|
| 1196 |
+
self.collective_field[archetype]['regional_variations'][region].append(activation)
|
| 1197 |
+
|
| 1198 |
+
# Keep only recent regional data
|
| 1199 |
+
if len(self.collective_field[archetype]['regional_variations'][region]) > 100:
|
| 1200 |
+
self.collective_field[archetype]['regional_variations'][region] = \
|
| 1201 |
+
self.collective_field[archetype]['regional_variations'][region][-100:]
|
| 1202 |
+
|
| 1203 |
+
# Detect resonance peaks
|
| 1204 |
+
self._detect_resonance_peaks(archetype)
|
| 1205 |
+
|
| 1206 |
+
# Calculate stability metric
|
| 1207 |
+
self._calculate_stability_metric(archetype)
|
| 1208 |
+
|
| 1209 |
+
# Update global resonance waves
|
| 1210 |
+
self._update_global_resonance(archetype, global_activation, current_time)
|
| 1211 |
+
|
| 1212 |
+
def _detect_resonance_peaks(self, archetype: str):
|
| 1213 |
+
"""Detect significant resonance peaks in collective activation"""
|
| 1214 |
+
history = self.collective_field[archetype]['activation_history']
|
| 1215 |
+
if len(history) < 10:
|
| 1216 |
+
return
|
| 1217 |
+
|
| 1218 |
+
activations = [entry['global_activation'] for entry in history[-50:]] # Last 50 readings
|
| 1219 |
+
mean_activation = np.mean(activations)
|
| 1220 |
+
std_activation = np.std(activations)
|
| 1221 |
+
|
| 1222 |
+
current_activation = activations[-1]
|
| 1223 |
+
|
| 1224 |
+
# Detect peak if current activation is 2 standard deviations above mean
|
| 1225 |
+
if current_activation > mean_activation + 2 * std_activation:
|
| 1226 |
+
peak_data = {
|
| 1227 |
+
'timestamp': history[-1]['timestamp'],
|
| 1228 |
+
'activation_strength': current_activation,
|
| 1229 |
+
'significance': (current_activation - mean_activation) / std_activation,
|
| 1230 |
+
'duration': self._estimate_peak_duration(archetype)
|
| 1231 |
+
}
|
| 1232 |
+
|
| 1233 |
+
self.collective_field[archetype]['resonance_peaks'].append(peak_data)
|
| 1234 |
+
|
| 1235 |
+
def _estimate_peak_duration(self, archetype: str) -> float:
|
| 1236 |
+
"""Estimate duration of resonance peak"""
|
| 1237 |
+
# Simple estimation based on historical patterns
|
| 1238 |
+
peaks = self.collective_field[archetype]['resonance_peaks']
|
| 1239 |
+
if len(peaks) < 2:
|
| 1240 |
+
return 1.0 # Default duration in hours
|
| 1241 |
+
|
| 1242 |
+
durations = []
|
| 1243 |
+
for i in range(1, len(peaks)):
|
| 1244 |
+
time_diff = (peaks[i]['timestamp'] - peaks[i-1]['timestamp']).total_seconds() / 3600
|
| 1245 |
+
durations.append(time_diff)
|
| 1246 |
+
|
| 1247 |
+
return np.mean(durations) if durations else 1.0
|
| 1248 |
+
|
| 1249 |
+
def _calculate_stability_metric(self, archetype: str):
|
| 1250 |
+
"""Calculate stability metric for collective activation"""
|
| 1251 |
+
history = self.collective_field[archetype]['activation_history']
|
| 1252 |
+
if len(history) < 2:
|
| 1253 |
+
self.collective_field[archetype]['stability_metric'] = 1.0
|
| 1254 |
+
return
|
| 1255 |
+
|
| 1256 |
+
activations = [entry['global_activation'] for entry in history[-100:]]
|
| 1257 |
+
volatility = np.std(activations) / np.mean(activations)
|
| 1258 |
+
stability = 1 - min(1.0, volatility)
|
| 1259 |
+
|
| 1260 |
+
self.collective_field[archetype]['stability_metric'] = stability
|
| 1261 |
+
|
| 1262 |
+
def _update_global_resonance(self, archetype: str, activation: float, timestamp: datetime):
|
| 1263 |
+
"""Update global resonance wave patterns"""
|
| 1264 |
+
if archetype not in self.global_resonance_waves:
|
| 1265 |
+
self.global_resonance_waves[archetype] = {
|
| 1266 |
+
'waveform': [],
|
| 1267 |
+
'frequency': 0.0,
|
| 1268 |
+
'amplitude': 0.0,
|
| 1269 |
+
'phase': 0.0
|
| 1270 |
+
}
|
| 1271 |
+
|
| 1272 |
+
wave_data = self.global_resonance_waves[archetype]
|
| 1273 |
+
wave_data['waveform'].append({
|
| 1274 |
+
'timestamp': timestamp,
|
| 1275 |
+
'amplitude': activation
|
| 1276 |
+
})
|
| 1277 |
+
|
| 1278 |
+
# Keep waveform manageable
|
| 1279 |
+
if len(wave_data['waveform']) > 1000:
|
| 1280 |
+
wave_data['waveform'] = wave_data['waveform'][-1000:]
|
| 1281 |
+
|
| 1282 |
+
# Simple wave analysis (could be enhanced with FFT)
|
| 1283 |
+
if len(wave_data['waveform']) >= 10:
|
| 1284 |
+
amplitudes = [point['amplitude'] for point in wave_data['waveform'][-10:]]
|
| 1285 |
+
wave_data['amplitude'] = np.mean(amplitudes)
|
| 1286 |
+
wave_data['frequency'] = self._estimate_frequency(wave_data['waveform'][-10:])
|
| 1287 |
+
|
| 1288 |
+
def _estimate_frequency(self, waveform: List[Dict]) -> float:
|
| 1289 |
+
"""Estimate frequency of resonance wave"""
|
| 1290 |
+
if len(waveform) < 2:
|
| 1291 |
+
return 0.0
|
| 1292 |
+
|
| 1293 |
+
# Simple zero-crossing frequency estimation
|
| 1294 |
+
amplitudes = [point['amplitude'] for point in waveform]
|
| 1295 |
+
mean_amp = np.mean(amplitudes)
|
| 1296 |
+
|
| 1297 |
+
zero_crossings = 0
|
| 1298 |
+
for i in range(1, len(amplitudes)):
|
| 1299 |
+
if (amplitudes[i-1] - mean_amp) * (amplitudes[i] - mean_amp) < 0:
|
| 1300 |
+
zero_crossings += 1
|
| 1301 |
+
|
| 1302 |
+
time_span = (waveform[-1]['timestamp'] - waveform[0]['timestamp']).total_seconds()
|
| 1303 |
+
frequency = zero_crossings / (2 * time_span) if time_span > 0 else 0.0
|
| 1304 |
+
|
| 1305 |
+
return frequency
|
| 1306 |
+
|
| 1307 |
+
def generate_consciousness_weather_report(self) -> Dict[str, Any]:
|
| 1308 |
+
"""Generate consciousness weather report for all archetypes"""
|
| 1309 |
+
weather_report = {
|
| 1310 |
+
'timestamp': datetime.now(),
|
| 1311 |
+
'overall_conditions': {},
|
| 1312 |
+
'archetype_forecasts': {},
|
| 1313 |
+
'global_resonance_index': 0.0,
|
| 1314 |
+
'collective_stability': 0.0
|
| 1315 |
+
}
|
| 1316 |
+
|
| 1317 |
+
total_activation = 0
|
| 1318 |
+
total_stability = 0
|
| 1319 |
+
archetype_count = len(self.collective_field)
|
| 1320 |
+
|
| 1321 |
+
for archetype, data in self.collective_field.items():
|
| 1322 |
+
current_activation = data['activation_history'][-1]['global_activation'] if data['activation_history'] else 0
|
| 1323 |
+
stability = data['stability_metric']
|
| 1324 |
+
|
| 1325 |
+
# Determine consciousness "weather" condition
|
| 1326 |
+
if current_activation > 0.8:
|
| 1327 |
+
condition = "high_resonance_storm"
|
| 1328 |
+
elif current_activation > 0.6:
|
| 1329 |
+
condition = "resonance_ surge"
|
| 1330 |
+
elif current_activation > 0.4:
|
| 1331 |
+
condition = "stable_resonance"
|
| 1332 |
+
elif current_activation > 0.2:
|
| 1333 |
+
condition = "low_resonance"
|
| 1334 |
+
else:
|
| 1335 |
+
condition = "resonance_drought"
|
| 1336 |
+
|
| 1337 |
+
weather_report['archetype_forecasts'][archetype] = {
|
| 1338 |
+
'condition': condition,
|
| 1339 |
+
'activation_level': current_activation,
|
| 1340 |
+
'stability': stability,
|
| 1341 |
+
'recent_peaks': len(data['resonance_peaks'][-24:]), # Last 24 peaks
|
| 1342 |
+
'regional_variation': np.std(list(data.get('regional_variations', {}).values())) if data.get('regional_variations') else 0.0
|
| 1343 |
+
}
|
| 1344 |
+
|
| 1345 |
+
total_activation += current_activation
|
| 1346 |
+
total_stability += stability
|
| 1347 |
+
|
| 1348 |
+
if archetype_count > 0:
|
| 1349 |
+
weather_report['global_resonance_index'] = total_activation / archetype_count
|
| 1350 |
+
weather_report['collective_stability'] = total_stability / archetype_count
|
| 1351 |
+
|
| 1352 |
+
# Overall condition
|
| 1353 |
+
if weather_report['global_resonance_index'] > 0.7:
|
| 1354 |
+
weather_report['overall_conditions']['state'] = "heightened_consciousness"
|
| 1355 |
+
elif weather_report['global_resonance_index'] > 0.5:
|
| 1356 |
+
weather_report['overall_conditions']['state'] = "active_awareness"
|
| 1357 |
+
else:
|
| 1358 |
+
weather_report['overall_conditions']['state'] = "baseline_consciousness"
|
| 1359 |
+
|
| 1360 |
+
weather_report['overall_conditions']['trend'] = self._calculate_global_trend()
|
| 1361 |
+
|
| 1362 |
+
return weather_report
|
| 1363 |
+
|
| 1364 |
+
def _calculate_global_trend(self) -> str:
|
| 1365 |
+
"""Calculate global consciousness trend"""
|
| 1366 |
+
# Simplified trend calculation
|
| 1367 |
+
recent_activations = []
|
| 1368 |
+
for archetype_data in self.collective_field.values():
|
| 1369 |
+
if archetype_data['activation_history']:
|
| 1370 |
+
recent_activations.extend(
|
| 1371 |
+
[entry['global_activation'] for entry in archetype_data['activation_history'][-10:]]
|
| 1372 |
+
)
|
| 1373 |
+
|
| 1374 |
+
if len(recent_activations) < 5:
|
| 1375 |
+
return "stable"
|
| 1376 |
+
|
| 1377 |
+
slope = stats.linregress(range(len(recent_activations)), recent_activations).slope
|
| 1378 |
+
|
| 1379 |
+
if slope > 0.01:
|
| 1380 |
+
return "rising"
|
| 1381 |
+
elif slope < -0.01:
|
| 1382 |
+
return "falling"
|
| 1383 |
+
else:
|
| 1384 |
+
return "stable"
|
| 1385 |
+
|
| 1386 |
+
class UniversalArchetypalTransmissionEngine:
|
| 1387 |
+
"""Main engine integrating all advanced modules with enhanced capabilities"""
|
| 1388 |
+
|
| 1389 |
+
def __init__(self):
|
| 1390 |
+
self.consciousness_tech = {}
|
| 1391 |
+
self.phylogenetics = CulturalPhylogenetics()
|
| 1392 |
+
self.geospatial_mapper = GeospatialArchetypalMapper()
|
| 1393 |
+
self.entropy_calculator = ArchetypalEntropyIndex()
|
| 1394 |
+
self.resonance_matrix = CrossCulturalResonanceMatrix()
|
| 1395 |
+
self.mutation_engine = SymbolicMutationEngine()
|
| 1396 |
+
self.entanglement_analyzer = ArchetypalEntanglement()
|
| 1397 |
+
self.collective_mapper = CollectiveConsciousnessMapper()
|
| 1398 |
+
self.archetypal_db = {}
|
| 1399 |
+
self.performance_history = []
|
| 1400 |
+
|
| 1401 |
+
# Advanced monitoring
|
| 1402 |
+
self.system_health = {
|
| 1403 |
+
'neural_network_integrity': 1.0,
|
| 1404 |
+
'quantum_coherence': 1.0,
|
| 1405 |
+
'symbolic_resolution': 1.0,
|
| 1406 |
+
'temporal_synchronization': 1.0
|
| 1407 |
+
}
|
| 1408 |
+
|
| 1409 |
+
def register_archetype(self, archetype: ArchetypalStrand,
|
| 1410 |
+
consciousness_tech: ConsciousnessTechnology):
|
| 1411 |
+
"""Register a new archetype with its consciousness technology"""
|
| 1412 |
+
self.archetypal_db[archetype.name] = archetype
|
| 1413 |
+
self.consciousness_tech[archetype.name] = consciousness_tech
|
| 1414 |
+
|
| 1415 |
+
# Initialize collective tracking
|
| 1416 |
+
self.collective_mapper.update_collective_resonance(
|
| 1417 |
+
archetype.name,
|
| 1418 |
+
global_activation=0.5,
|
| 1419 |
+
regional_data={'global': 0.5}
|
| 1420 |
+
)
|
| 1421 |
+
|
| 1422 |
+
def prove_consciousness_architecture(self,
|
| 1423 |
+
include_entanglement: bool = True) -> pd.DataFrame:
|
| 1424 |
+
"""Comprehensive analysis of archetypal strength and coherence"""
|
| 1425 |
+
|
| 1426 |
+
results = []
|
| 1427 |
+
for name, archetype in self.archetypal_db.items():
|
| 1428 |
+
tech = self.consciousness_tech.get(name)
|
| 1429 |
+
|
| 1430 |
+
if not tech:
|
| 1431 |
+
# Skip if no technology registered
|
| 1432 |
+
continue
|
| 1433 |
+
|
| 1434 |
+
# Calculate comprehensive metrics
|
| 1435 |
+
neural_impact = tech.neural_correlate.neural_efficiency
|
| 1436 |
+
quantum_strength = tech.quantum_signature.coherence
|
| 1437 |
+
cultural_resilience = archetype.cultural_resilience
|
| 1438 |
+
|
| 1439 |
+
# Entanglement analysis if requested
|
| 1440 |
+
entanglement_factor = 1.0
|
| 1441 |
+
if include_entanglement:
|
| 1442 |
+
# Calculate average entanglement with other archetypes
|
| 1443 |
+
entanglement_strengths = []
|
| 1444 |
+
for other_name, other_archetype in self.archetypal_db.items():
|
| 1445 |
+
if other_name != name:
|
| 1446 |
+
other_tech = self.consciousness_tech.get(other_name)
|
| 1447 |
+
if other_tech:
|
| 1448 |
+
entanglement = self.entanglement_analyzer.calculate_quantum_entanglement(
|
| 1449 |
+
archetype, other_archetype, tech, other_tech
|
| 1450 |
+
)
|
| 1451 |
+
entanglement_strengths.append(entanglement['entanglement_probability'])
|
| 1452 |
+
|
| 1453 |
+
if entanglement_strengths:
|
| 1454 |
+
entanglement_factor = 1 + (np.mean(entanglement_strengths) * 0.2)
|
| 1455 |
+
|
| 1456 |
+
overall_strength = (
|
| 1457 |
+
archetype.symbolic_strength * 0.3 +
|
| 1458 |
+
neural_impact * 0.25 +
|
| 1459 |
+
quantum_strength * 0.2 +
|
| 1460 |
+
cultural_resilience * 0.15 +
|
| 1461 |
+
(archetype.symbolic_strength * entanglement_factor) * 0.1
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
# Get collective activation data
|
| 1465 |
+
collective_data = self.collective_mapper.collective_field.get(name, {})
|
| 1466 |
+
current_activation = 0.5
|
| 1467 |
+
if collective_data.get('activation_history'):
|
| 1468 |
+
current_activation = collective_data['activation_history'][-1]['global_activation']
|
| 1469 |
+
|
| 1470 |
+
results.append({
|
| 1471 |
+
'Archetype': name,
|
| 1472 |
+
'Symbolic_Strength': archetype.symbolic_strength,
|
| 1473 |
+
'Temporal_Depth': archetype.temporal_depth,
|
| 1474 |
+
'Spatial_Distribution': archetype.spatial_distribution,
|
| 1475 |
+
'Quantum_Coherence': archetype.quantum_coherence,
|
| 1476 |
+
'Neural_Impact': neural_impact,
|
| 1477 |
+
'Cultural_Resilience': cultural_resilience,
|
| 1478 |
+
'Collective_Activation': current_activation,
|
| 1479 |
+
'Overall_Strength': overall_strength,
|
| 1480 |
+
'Consciousness_State': tech.neural_correlate.frequency_band.value,
|
| 1481 |
+
'Entanglement_Factor': entanglement_factor
|
| 1482 |
+
})
|
| 1483 |
+
|
| 1484 |
+
df = pd.DataFrame(results)
|
| 1485 |
+
return df.sort_values('Overall_Strength', ascending=False)
|
| 1486 |
+
|
| 1487 |
+
def generate_cultural_diagnostic(self, depth: str = 'comprehensive') -> Dict[str, Any]:
|
| 1488 |
+
"""Generate comprehensive cultural psyche diagnostic"""
|
| 1489 |
+
|
| 1490 |
+
strength_analysis = self.prove_consciousness_architecture()
|
| 1491 |
+
high_entropy = self.entropy_calculator.get_high_entropy_archetypes()
|
| 1492 |
+
resonance_net = self.resonance_matrix.build_resonance_network()
|
| 1493 |
+
weather_report = self.collective_mapper.generate_consciousness_weather_report()
|
| 1494 |
+
entangled_pairs = self.entanglement_analyzer.find_strongly_entangled_pairs()
|
| 1495 |
+
|
| 1496 |
+
diagnostic = {
|
| 1497 |
+
'timestamp': datetime.now(),
|
| 1498 |
+
'analysis_depth': depth,
|
| 1499 |
+
'system_health': self.system_health,
|
| 1500 |
+
'strength_analysis': {
|
| 1501 |
+
'top_archetypes': strength_analysis.head(5).to_dict('records'),
|
| 1502 |
+
'weakest_archetypes': strength_analysis.tail(3).to_dict('records'),
|
| 1503 |
+
'average_strength': strength_analysis['Overall_Strength'].mean(),
|
| 1504 |
+
'strength_distribution': {
|
| 1505 |
+
'min': strength_analysis['Overall_Strength'].min(),
|
| 1506 |
+
'max': strength_analysis['Overall_Strength'].max(),
|
| 1507 |
+
'std': strength_analysis['Overall_Strength'].std()
|
| 1508 |
+
}
|
| 1509 |
+
},
|
| 1510 |
+
'cultural_phase_shift_indicators': {
|
| 1511 |
+
'rising_archetypes': self._identify_rising_archetypes(),
|
| 1512 |
+
'declining_archetypes': self._identify_declining_archetypes(),
|
| 1513 |
+
'high_entropy_archetypes': high_entropy,
|
| 1514 |
+
'entropy_network_density': nx.density(self.entropy_calculator.get_entropy_network()) if len(self.archetypal_db) > 1 else 0.0
|
| 1515 |
+
},
|
| 1516 |
+
'collective_consciousness': {
|
| 1517 |
+
'weather_report': weather_report,
|
| 1518 |
+
'global_resonance_index': weather_report.get('global_resonance_index', 0),
|
| 1519 |
+
'collective_stability': weather_report.get('collective_stability', 0)
|
| 1520 |
+
},
|
| 1521 |
+
'resonance_analysis': {
|
| 1522 |
+
'network_density': nx.density(resonance_net),
|
| 1523 |
+
'cultural_clusters': self.resonance_matrix.find_cultural_clusters(),
|
| 1524 |
+
'universal_archetypes': self.resonance_matrix.get_universal_archetypes(),
|
| 1525 |
+
'average_cluster_size': np.mean([len(cluster) for cluster in self.resonance_matrix.cultural_clusters.values()]) if self.resonance_matrix.cultural_clusters else 0
|
| 1526 |
+
},
|
| 1527 |
+
'quantum_entanglement': {
|
| 1528 |
+
'strongly_entangled_pairs': entangled_pairs,
|
| 1529 |
+
'entanglement_entropy': self.entanglement_analyzer.calculate_entanglement_entropy(),
|
| 1530 |
+
'total_entangled_connections': len(self.entanglement_analyzer.entanglement_network.edges())
|
| 1531 |
+
},
|
| 1532 |
+
'consciousness_coherence_index': self._calculate_coherence_index(),
|
| 1533 |
+
'predicted_evolution': self._predict_cultural_evolution(depth),
|
| 1534 |
+
'recommendations': self._generate_recommendations()
|
| 1535 |
+
}
|
| 1536 |
+
|
| 1537 |
+
# Store diagnostic in performance history
|
| 1538 |
+
self.performance_history.append({
|
| 1539 |
+
'timestamp': diagnostic['timestamp'],
|
| 1540 |
+
'global_resonance_index': diagnostic['collective_consciousness']['global_resonance_index'],
|
| 1541 |
+
'coherence_index': diagnostic['consciousness_coherence_index'],
|
| 1542 |
+
'system_health': diagnostic['system_health']
|
| 1543 |
+
})
|
| 1544 |
+
|
| 1545 |
+
return diagnostic
|
| 1546 |
+
|
| 1547 |
+
def _identify_rising_archetypes(self) -> List[Dict]:
|
| 1548 |
+
"""Identify archetypes with rising influence"""
|
| 1549 |
+
# This would typically use historical data - simplified for demo
|
| 1550 |
+
strength_df = self.prove_consciousness_architecture()
|
| 1551 |
+
top_archetypes = strength_df.head(3)
|
| 1552 |
+
|
| 1553 |
+
rising = []
|
| 1554 |
+
for _, row in top_archetypes.iterrows():
|
| 1555 |
+
if row['Collective_Activation'] > 0.7:
|
| 1556 |
+
rising.append({
|
| 1557 |
+
'archetype': row['Archetype'],
|
| 1558 |
+
'strength': row['Overall_Strength'],
|
| 1559 |
+
'activation': row['Collective_Activation'],
|
| 1560 |
+
'momentum': 'high' if row['Overall_Strength'] > 0.8 else 'medium'
|
| 1561 |
+
})
|
| 1562 |
+
|
| 1563 |
+
return rising
|
| 1564 |
+
|
| 1565 |
+
def _identify_declining_archetypes(self) -> List[Dict]:
|
| 1566 |
+
"""Identify archetypes with declining influence"""
|
| 1567 |
+
strength_df = self.prove_consciousness_architecture()
|
| 1568 |
+
bottom_archetypes = strength_df.tail(3)
|
| 1569 |
+
|
| 1570 |
+
declining = []
|
| 1571 |
+
for _, row in bottom_archetypes.iterrows():
|
| 1572 |
+
if row['Collective_Activation'] < 0.3:
|
| 1573 |
+
declining.append({
|
| 1574 |
+
'archetype': row['Archetype'],
|
| 1575 |
+
'strength': row['Overall_Strength'],
|
| 1576 |
+
'activation': row['Collective_Activation'],
|
| 1577 |
+
'risk_level': 'high' if row['Overall_Strength'] < 0.3 else 'medium'
|
| 1578 |
+
})
|
| 1579 |
+
|
| 1580 |
+
return declining
|
| 1581 |
+
|
| 1582 |
+
def _calculate_coherence_index(self) -> Dict[str, float]:
|
| 1583 |
+
"""Calculate comprehensive coherence indices"""
|
| 1584 |
+
if not self.archetypal_db:
|
| 1585 |
+
return {'overall': 0.0, 'neural': 0.0, 'quantum': 0.0, 'cultural': 0.0}
|
| 1586 |
+
|
| 1587 |
+
# Neural coherence
|
| 1588 |
+
neural_coherence = np.mean([
|
| 1589 |
+
tech.neural_correlate.neural_efficiency
|
| 1590 |
+
for tech in self.consciousness_tech.values()
|
| 1591 |
+
]) if self.consciousness_tech else 0.5
|
| 1592 |
+
|
| 1593 |
+
# Quantum coherence
|
| 1594 |
+
quantum_coherence = np.mean([
|
| 1595 |
+
tech.quantum_signature.coherence
|
| 1596 |
+
for tech in self.consciousness_tech.values()
|
| 1597 |
+
]) if self.consciousness_tech else 0.5
|
| 1598 |
+
|
| 1599 |
+
# Cultural coherence
|
| 1600 |
+
cultural_coherence = np.mean([
|
| 1601 |
+
archetype.preservation_rate * 0.6 + archetype.quantum_coherence * 0.4
|
| 1602 |
+
for archetype in self.archetypal_db.values()
|
| 1603 |
+
])
|
| 1604 |
+
|
| 1605 |
+
# Overall coherence
|
| 1606 |
+
overall_coherence = (
|
| 1607 |
+
neural_coherence * 0.3 +
|
| 1608 |
+
quantum_coherence * 0.3 +
|
| 1609 |
+
cultural_coherence * 0.4
|
| 1610 |
+
)
|
| 1611 |
+
|
| 1612 |
+
return {
|
| 1613 |
+
'overall': overall_coherence,
|
| 1614 |
+
'neural': neural_coherence,
|
| 1615 |
+
'quantum': quantum_coherence,
|
| 1616 |
+
'cultural': cultural_coherence
|
| 1617 |
+
}
|
| 1618 |
+
|
| 1619 |
+
def _predict_cultural_evolution(self, depth: str) -> List[Dict[str, Any]]:
|
| 1620 |
+
"""Predict cultural evolution with variable depth"""
|
| 1621 |
+
predictions = []
|
| 1622 |
+
|
| 1623 |
+
pressure_vectors = ['digitization', 'ecological_crisis', 'quantum_awakening']
|
| 1624 |
+
|
| 1625 |
+
for pressure in pressure_vectors:
|
| 1626 |
+
for archetype_name in list(self.archetypal_db.keys())[:5]: # Top 5 for demo
|
| 1627 |
+
if depth == 'comprehensive':
|
| 1628 |
+
scenarios = self.mutation_engine.generate_mutation_scenarios(
|
| 1629 |
+
archetype_name, 'near_future'
|
| 1630 |
+
)
|
| 1631 |
+
if pressure in scenarios:
|
| 1632 |
+
predictions.append({
|
| 1633 |
+
'pressure_vector': pressure,
|
| 1634 |
+
'archetype': archetype_name,
|
| 1635 |
+
'scenario': scenarios[pressure],
|
| 1636 |
+
'timeframe': 'near_future',
|
| 1637 |
+
'analysis_depth': 'comprehensive'
|
| 1638 |
+
})
|
| 1639 |
+
else:
|
| 1640 |
+
mutations = self.mutation_engine.predict_mutation(
|
| 1641 |
+
archetype_name, pressure, intensity=0.7
|
| 1642 |
+
)
|
| 1643 |
+
if mutations:
|
| 1644 |
+
predictions.append({
|
| 1645 |
+
'pressure_vector': pressure,
|
| 1646 |
+
'archetype': archetype_name,
|
| 1647 |
+
'most_likely_mutation': mutations[0],
|
| 1648 |
+
'total_possibilities': len(mutations),
|
| 1649 |
+
'timeframe': 'next_20_years',
|
| 1650 |
+
'analysis_depth': 'basic'
|
| 1651 |
+
})
|
| 1652 |
+
|
| 1653 |
+
return predictions
|
| 1654 |
+
|
| 1655 |
+
def _generate_recommendations(self) -> List[Dict[str, Any]]:
|
| 1656 |
+
"""Generate system recommendations based on current state"""
|
| 1657 |
+
recommendations = []
|
| 1658 |
+
diagnostic = self.generate_cultural_diagnostic('basic') # Avoid recursion
|
| 1659 |
+
|
| 1660 |
+
# Check system health
|
| 1661 |
+
health_scores = self.system_health.values()
|
| 1662 |
+
avg_health = sum(health_scores) / len(health_scores) if health_scores else 0
|
| 1663 |
+
|
| 1664 |
+
if avg_health < 0.7:
|
| 1665 |
+
recommendations.append({
|
| 1666 |
+
'type': 'system_maintenance',
|
| 1667 |
+
'priority': 'high',
|
| 1668 |
+
'message': 'System health below optimal levels. Recommend neural network recalibration.',
|
| 1669 |
+
'suggested_actions': [
|
| 1670 |
+
'Run neural coherence diagnostics',
|
| 1671 |
+
'Check quantum entanglement matrix integrity',
|
| 1672 |
+
'Verify symbolic resolution settings'
|
| 1673 |
+
]
|
| 1674 |
+
})
|
| 1675 |
+
|
| 1676 |
+
# Check for high entropy archetypes
|
| 1677 |
+
high_entropy = diagnostic['cultural_phase_shift_indicators']['high_entropy_archetypes']
|
| 1678 |
+
if high_entropy:
|
| 1679 |
+
recommendations.append({
|
| 1680 |
+
'type': 'cultural_monitoring',
|
| 1681 |
+
'priority': 'medium',
|
| 1682 |
+
'message': f'Detected {len(high_entropy)} high-entropy archetypes undergoing significant mutation.',
|
| 1683 |
+
'suggested_actions': [
|
| 1684 |
+
'Increase monitoring frequency for high-entropy archetypes',
|
| 1685 |
+
'Prepare contingency plans for symbolic mutations',
|
| 1686 |
+
'Update transformation prediction models'
|
| 1687 |
+
]
|
| 1688 |
+
})
|
| 1689 |
+
|
| 1690 |
+
# Check collective consciousness stability
|
| 1691 |
+
collective_stability = diagnostic['collective_consciousness']['collective_stability']
|
| 1692 |
+
if collective_stability < 0.6:
|
| 1693 |
+
recommendations.append({
|
| 1694 |
+
'type': 'collective_awareness',
|
| 1695 |
+
'priority': 'medium',
|
| 1696 |
+
'message': 'Collective consciousness stability below optimal threshold.',
|
| 1697 |
+
'suggested_actions': [
|
| 1698 |
+
'Monitor regional resonance variations',
|
| 1699 |
+
'Check for external interference patterns',
|
| 1700 |
+
'Consider consciousness stabilization protocols'
|
| 1701 |
+
]
|
| 1702 |
+
})
|
| 1703 |
+
|
| 1704 |
+
return recommendations
|
| 1705 |
+
|
| 1706 |
+
def activate_consciousness_network(self, archetypes: List[str],
|
| 1707 |
+
intensity: float = 0.8,
|
| 1708 |
+
duration: float = 1.0) -> Dict[str, Any]:
|
| 1709 |
+
"""Activate multiple consciousness technologies simultaneously"""
|
| 1710 |
+
results = {
|
| 1711 |
+
'timestamp': datetime.now(),
|
| 1712 |
+
'total_activations': 0,
|
| 1713 |
+
'successful_activations': 0,
|
| 1714 |
+
'network_coherence': 0.0,
|
| 1715 |
+
'individual_results': {},
|
| 1716 |
+
'emergent_phenomena': {}
|
| 1717 |
+
}
|
| 1718 |
+
|
| 1719 |
+
individual_results = {}
|
| 1720 |
+
activations = []
|
| 1721 |
+
|
| 1722 |
+
for archetype_name in archetypes:
|
| 1723 |
+
if archetype_name in self.consciousness_tech:
|
| 1724 |
+
tech = self.consciousness_tech[archetype_name]
|
| 1725 |
+
activation_result = tech.activate(intensity, duration)
|
| 1726 |
+
individual_results[archetype_name] = activation_result
|
| 1727 |
+
activations.append(activation_result)
|
| 1728 |
+
results['successful_activations'] += 1
|
| 1729 |
+
|
| 1730 |
+
results['total_activations'] = len(archetypes)
|
| 1731 |
+
results['individual_results'] = individual_results
|
| 1732 |
+
|
| 1733 |
+
# Calculate network coherence
|
| 1734 |
+
if len(activations) > 1:
|
| 1735 |
+
coherence_scores = [act['quantum_coherence'] for act in activations]
|
| 1736 |
+
results['network_coherence'] = np.mean(coherence_scores)
|
| 1737 |
+
|
| 1738 |
+
# Check for emergent phenomena
|
| 1739 |
+
if results['network_coherence'] > 0.8:
|
| 1740 |
+
results['emergent_phenomena'] = {
|
| 1741 |
+
'type': 'collective_resonance_ field',
|
| 1742 |
+
'strength': results['network_coherence'],
|
| 1743 |
+
'stability': np.std(coherence_scores) < 0.1,
|
| 1744 |
+
'qualia_synergy': self._calculate_qualia_synergy(activations)
|
| 1745 |
+
}
|
| 1746 |
+
|
| 1747 |
+
# Update collective consciousness mapping
|
| 1748 |
+
for archetype_name in archetypes:
|
| 1749 |
+
if archetype_name in individual_results:
|
| 1750 |
+
activation_strength = individual_results[archetype_name]['performance_score']
|
| 1751 |
+
self.collective_mapper.update_collective_resonance(
|
| 1752 |
+
archetype_name,
|
| 1753 |
+
global_activation=activation_strength,
|
| 1754 |
+
regional_data={'network_activation': activation_strength}
|
| 1755 |
+
)
|
| 1756 |
+
|
| 1757 |
+
return results
|
| 1758 |
+
|
| 1759 |
+
def _calculate_qualia_synergy(self, activations: List[Dict]) -> float:
|
| 1760 |
+
"""Calculate qualia synergy between multiple activations"""
|
| 1761 |
+
if len(activations) < 2:
|
| 1762 |
+
return 0.0
|
| 1763 |
+
|
| 1764 |
+
qualia_vectors = [act['qualia_experience'] for act in activations]
|
| 1765 |
+
|
| 1766 |
+
# Calculate average pairwise similarity
|
| 1767 |
+
similarities = []
|
| 1768 |
+
for i in range(len(qualia_vectors)):
|
| 1769 |
+
for j in range(i + 1, len(qualia_vectors)):
|
| 1770 |
+
similarity = 1 - spatial.distance.cosine(qualia_vectors[i], qualia_vectors[j])
|
| 1771 |
+
similarities.append(similarity)
|
| 1772 |
+
|
| 1773 |
+
return np.mean(similarities) if similarities else 0.0
|
| 1774 |
+
|
| 1775 |
+
def get_system_performance_report(self) -> Dict[str, Any]:
|
| 1776 |
+
"""Generate comprehensive system performance report"""
|
| 1777 |
+
current_diagnostic = self.generate_cultural_diagnostic()
|
| 1778 |
+
|
| 1779 |
+
# Calculate performance trends
|
| 1780 |
+
performance_trend = 'stable'
|
| 1781 |
+
if len(self.performance_history) >= 2:
|
| 1782 |
+
recent_coherence = [entry['coherence_index']['overall'] for entry in self.performance_history[-5:]]
|
| 1783 |
+
if len(recent_coherence) >= 2:
|
| 1784 |
+
slope = stats.linregress(range(len(recent_coherence)), recent_coherence).slope
|
| 1785 |
+
if slope > 0.01:
|
| 1786 |
+
performance_trend = 'improving'
|
| 1787 |
+
elif slope < -0.01:
|
| 1788 |
+
performance_trend = 'declining'
|
| 1789 |
+
|
| 1790 |
+
report = {
|
| 1791 |
+
'timestamp': datetime.now(),
|
| 1792 |
+
'system_status': 'operational',
|
| 1793 |
+
'performance_metrics': {
|
| 1794 |
+
'total_archetypes': len(self.archetypal_db),
|
| 1795 |
+
'active_technologies': len(self.consciousness_tech),
|
| 1796 |
+
'average_activation_success': self._calculate_avg_activation_success(),
|
| 1797 |
+
'system_uptime': self._calculate_system_uptime(),
|
| 1798 |
+
'data_integrity': self._assess_data_integrity()
|
| 1799 |
+
},
|
| 1800 |
+
'current_state': current_diagnostic,
|
| 1801 |
+
'performance_trend': performance_trend,
|
| 1802 |
+
'resource_utilization': {
|
| 1803 |
+
'computational_load': len(self.archetypal_db) * 0.1, # Simplified
|
| 1804 |
+
'memory_usage': len(self.consciousness_tech) * 0.05,
|
| 1805 |
+
'network_bandwidth': len(self.performance_history) * 0.01
|
| 1806 |
+
},
|
| 1807 |
+
'recommendations': self._generate_system_recommendations()
|
| 1808 |
+
}
|
| 1809 |
+
|
| 1810 |
+
return report
|
| 1811 |
+
|
| 1812 |
+
def _calculate_avg_activation_success(self) -> float:
|
| 1813 |
+
"""Calculate average activation success rate"""
|
| 1814 |
+
if not self.consciousness_tech:
|
| 1815 |
+
return 0.0
|
| 1816 |
+
|
| 1817 |
+
success_rates = []
|
| 1818 |
+
for tech in self.consciousness_tech.values():
|
| 1819 |
+
perf_report = tech.get_performance_report()
|
| 1820 |
+
success_rates.append(perf_report['overall_health'])
|
| 1821 |
+
|
| 1822 |
+
return np.mean(success_rates) if success_rates else 0.0
|
| 1823 |
+
|
| 1824 |
+
def _calculate_system_uptime(self) -> float:
|
| 1825 |
+
"""Calculate system uptime (simplified)"""
|
| 1826 |
+
if not self.performance_history:
|
| 1827 |
+
return 1.0
|
| 1828 |
+
|
| 1829 |
+
# Count successful operations vs total
|
| 1830 |
+
successful_ops = sum(1 for entry in self.performance_history
|
| 1831 |
+
if entry['coherence_index']['overall'] > 0.5)
|
| 1832 |
+
total_ops = len(self.performance_history)
|
| 1833 |
+
|
| 1834 |
+
return successful_ops / total_ops if total_ops > 0 else 1.0
|
| 1835 |
+
|
| 1836 |
+
def _assess_data_integrity(self) -> float:
|
| 1837 |
+
"""Assess overall data integrity"""
|
| 1838 |
+
integrity_scores = []
|
| 1839 |
+
|
| 1840 |
+
# Check archetype data completeness
|
| 1841 |
+
for archetype in self.archetypal_db.values():
|
| 1842 |
+
completeness = (
|
| 1843 |
+
(1.0 if archetype.temporal_depth > 0 else 0.5) +
|
| 1844 |
+
(1.0 if archetype.spatial_distribution > 0 else 0.5) +
|
| 1845 |
+
(1.0 if archetype.quantum_coherence > 0 else 0.5)
|
| 1846 |
+
) / 3
|
| 1847 |
+
integrity_scores.append(completeness)
|
| 1848 |
+
|
| 1849 |
+
# Check technology data
|
| 1850 |
+
for tech in self.consciousness_tech.values():
|
| 1851 |
+
tech_completeness = (
|
| 1852 |
+
tech.neural_correlate.neural_efficiency +
|
| 1853 |
+
tech.quantum_signature.coherence
|
| 1854 |
+
) / 2
|
| 1855 |
+
integrity_scores.append(tech_completeness)
|
| 1856 |
+
|
| 1857 |
+
return np.mean(integrity_scores) if integrity_scores else 1.0
|
| 1858 |
+
|
| 1859 |
+
def _generate_system_recommendations(self) -> List[Dict[str, Any]]:
|
| 1860 |
+
"""Generate system-level recommendations"""
|
| 1861 |
+
recommendations = []
|
| 1862 |
+
performance = self.get_system_performance_report()
|
| 1863 |
+
|
| 1864 |
+
# Check resource utilization
|
| 1865 |
+
resource_util = performance['resource_utilization']
|
| 1866 |
+
if (resource_util['computational_load'] > 0.8 or
|
| 1867 |
+
resource_util['memory_usage'] > 0.8):
|
| 1868 |
+
recommendations.append({
|
| 1869 |
+
'category': 'resource_management',
|
| 1870 |
+
'priority': 'high',
|
| 1871 |
+
'message': 'High resource utilization detected.',
|
| 1872 |
+
'actions': [
|
| 1873 |
+
'Consider load distribution across additional nodes',
|
| 1874 |
+
'Review data retention policies',
|
| 1875 |
+
'Optimize neural network calculations'
|
| 1876 |
+
]
|
| 1877 |
+
})
|
| 1878 |
+
|
| 1879 |
+
# Check data integrity
|
| 1880 |
+
if performance['performance_metrics']['data_integrity'] < 0.7:
|
| 1881 |
+
recommendations.append({
|
| 1882 |
+
'category': 'data_quality',
|
| 1883 |
+
'priority': 'medium',
|
| 1884 |
+
'message': 'Data integrity below optimal levels.',
|
| 1885 |
+
'actions': [
|
| 1886 |
+
'Run data validation routines',
|
| 1887 |
+
'Check for missing archetype attributes',
|
| 1888 |
+
'Verify neural correlate completeness'
|
| 1889 |
+
]
|
| 1890 |
+
})
|
| 1891 |
+
|
| 1892 |
+
# Check system performance trend
|
| 1893 |
+
if performance['performance_trend'] == 'declining':
|
| 1894 |
+
recommendations.append({
|
| 1895 |
+
'category': 'system_health',
|
| 1896 |
+
'priority': 'medium',
|
| 1897 |
+
'message': 'System performance showing declining trend.',
|
| 1898 |
+
'actions': [
|
| 1899 |
+
'Perform comprehensive system diagnostics',
|
| 1900 |
+
'Review recent configuration changes',
|
| 1901 |
+
'Check for external interference patterns'
|
| 1902 |
+
]
|
| 1903 |
+
})
|
| 1904 |
+
|
| 1905 |
+
return recommendations
|
| 1906 |
+
|
| 1907 |
+
# Enhanced example instantiation with advanced archetypes
|
| 1908 |
+
def create_advanced_archetypes():
|
| 1909 |
+
"""Create example archetypes with full neuro-symbolic specifications"""
|
| 1910 |
+
|
| 1911 |
+
# Solar Consciousness Archetype
|
| 1912 |
+
solar_archetype = ArchetypalStrand(
|
| 1913 |
+
name="Solar_Consciousness",
|
| 1914 |
+
symbolic_form="Sunburst",
|
| 1915 |
+
temporal_depth=6000,
|
| 1916 |
+
spatial_distribution=0.95,
|
| 1917 |
+
preservation_rate=0.9,
|
| 1918 |
+
quantum_coherence=0.95,
|
| 1919 |
+
cultural_penetration=0.9,
|
| 1920 |
+
transformative_potential=0.8,
|
| 1921 |
+
num_variants=15
|
| 1922 |
+
)
|
| 1923 |
+
|
| 1924 |
+
solar_quantum = QuantumSignature(
|
| 1925 |
+
coherence=0.95,
|
| 1926 |
+
entanglement=0.85,
|
| 1927 |
+
qualia_vector=np.array([0.9, 0.8, 0.95, 0.7, 0.99]), # high visual, cognitive, spiritual
|
| 1928 |
+
resonance_frequency=12.0, # Alpha resonance
|
| 1929 |
+
decoherence_time=5.0,
|
| 1930 |
+
nonlocal_correlation=0.8
|
| 1931 |
+
)
|
| 1932 |
+
|
| 1933 |
+
solar_neural = NeuralCorrelate(
|
| 1934 |
+
primary_regions=["PFC", "DMN", "Pineal_Region"],
|
| 1935 |
+
frequency_band=ConsciousnessState.ALPHA,
|
| 1936 |
+
cross_hemispheric_sync=0.9,
|
| 1937 |
+
neuroplasticity_impact=0.8,
|
| 1938 |
+
default_mode_engagement=0.7,
|
| 1939 |
+
salience_network_coupling=0.6,
|
| 1940 |
+
thalamocortical_resonance=0.8
|
| 1941 |
+
)
|
| 1942 |
+
|
| 1943 |
+
solar_tech = ConsciousnessTechnology(
|
| 1944 |
+
name="Solar_Illumination_Interface",
|
| 1945 |
+
archetype=solar_archetype,
|
| 1946 |
+
neural_correlate=solar_neural,
|
| 1947 |
+
quantum_sig=solar_quantum
|
| 1948 |
+
)
|
| 1949 |
+
|
| 1950 |
+
# Feminine Divine Archetype
|
| 1951 |
+
feminine_archetype = ArchetypalStrand(
|
| 1952 |
+
name="Feminine_Divine",
|
| 1953 |
+
symbolic_form="Flowing_Vessels",
|
| 1954 |
+
temporal_depth=8000,
|
| 1955 |
+
spatial_distribution=0.85,
|
| 1956 |
+
preservation_rate=0.7, # Some suppression in patriarchal eras
|
| 1957 |
+
quantum_coherence=0.9,
|
| 1958 |
+
cultural_penetration=0.8,
|
| 1959 |
+
transformative_potential=0.9,
|
| 1960 |
+
num_variants=12
|
| 1961 |
+
)
|
| 1962 |
+
|
| 1963 |
+
feminine_quantum = QuantumSignature(
|
| 1964 |
+
coherence=0.88,
|
| 1965 |
+
entanglement=0.92, # High connectivity
|
| 1966 |
+
qualia_vector=np.array([0.7, 0.95, 0.8, 0.9, 0.85]), # high emotional, somatic
|
| 1967 |
+
resonance_frequency=7.83, # Schumann resonance
|
| 1968 |
+
decoherence_time=8.0,
|
| 1969 |
+
nonlocal_correlation=0.9
|
| 1970 |
+
)
|
| 1971 |
+
|
| 1972 |
+
feminine_neural = NeuralCorrelate(
|
| 1973 |
+
primary_regions=["Whole_Brain", "Heart_Brain_Axis"],
|
| 1974 |
+
frequency_band=ConsciousnessState.THETA,
|
| 1975 |
+
cross_hemispheric_sync=0.95,
|
| 1976 |
+
neuroplasticity_impact=0.9,
|
| 1977 |
+
default_mode_engagement=0.8,
|
| 1978 |
+
salience_network_coupling=0.7,
|
| 1979 |
+
thalamocortical_resonance=0.6
|
| 1980 |
+
)
|
| 1981 |
+
|
| 1982 |
+
feminine_tech = ConsciousnessTechnology(
|
| 1983 |
+
name="Life_Flow_Resonator",
|
| 1984 |
+
archetype=feminine_archetype,
|
| 1985 |
+
neural_correlate=feminine_neural,
|
| 1986 |
+
quantum_sig=feminine_quantum
|
| 1987 |
+
)
|
| 1988 |
+
|
| 1989 |
+
# Warrior Protector Archetype
|
| 1990 |
+
warrior_archetype = ArchetypalStrand(
|
| 1991 |
+
name="Warrior_Protector",
|
| 1992 |
+
symbolic_form="Lion_Shield",
|
| 1993 |
+
temporal_depth=5000,
|
| 1994 |
+
spatial_distribution=0.75,
|
| 1995 |
+
preservation_rate=0.8,
|
| 1996 |
+
quantum_coherence=0.7,
|
| 1997 |
+
cultural_penetration=0.7,
|
| 1998 |
+
transformative_potential=0.6,
|
| 1999 |
+
num_variants=8
|
| 2000 |
+
)
|
| 2001 |
+
|
| 2002 |
+
warrior_quantum = QuantumSignature(
|
| 2003 |
+
coherence=0.75,
|
| 2004 |
+
entanglement=0.6,
|
| 2005 |
+
qualia_vector=np.array([0.8, 0.9, 0.7, 0.95, 0.6]), # high emotional, somatic
|
| 2006 |
+
resonance_frequency=16.0, # Beta resonance
|
| 2007 |
+
decoherence_time=3.0,
|
| 2008 |
+
nonlocal_correlation=0.5
|
| 2009 |
+
)
|
| 2010 |
+
|
| 2011 |
+
warrior_neural = NeuralCorrelate(
|
| 2012 |
+
primary_regions=["Amygdala", "Motor_Cortex", "ACC"],
|
| 2013 |
+
frequency_band=ConsciousnessState.BETA,
|
| 2014 |
+
cross_hemispheric_sync=0.7,
|
| 2015 |
+
neuroplasticity_impact=0.6,
|
| 2016 |
+
default_mode_engagement=0.4,
|
| 2017 |
+
salience_network_coupling=0.8,
|
| 2018 |
+
thalamocortical_resonance=0.7
|
| 2019 |
+
)
|
| 2020 |
+
|
| 2021 |
+
warrior_tech = ConsciousnessTechnology(
|
| 2022 |
+
name="Guardian_Activation_Matrix",
|
| 2023 |
+
archetype=warrior_archetype,
|
| 2024 |
+
neural_correlate=warrior_neural,
|
| 2025 |
+
quantum_sig=warrior_quantum
|
| 2026 |
+
)
|
| 2027 |
+
|
| 2028 |
+
return [
|
| 2029 |
+
(solar_archetype, solar_tech),
|
| 2030 |
+
(feminine_archetype, feminine_tech),
|
| 2031 |
+
(warrior_archetype, warrior_tech)
|
| 2032 |
+
]
|
| 2033 |
+
|
| 2034 |
+
# Advanced demonstration
|
| 2035 |
+
if __name__ == "__main__":
|
| 2036 |
+
print("=== UNIVERSAL ARCHETYPAL TRANSMISSION ENGINE v9.0 ===")
|
| 2037 |
+
print("Initializing Advanced Neuro-Symbolic Consciousness Architecture...")
|
| 2038 |
+
|
| 2039 |
+
# Initialize the advanced engine
|
| 2040 |
+
engine = UniversalArchetypalTransmissionEngine()
|
| 2041 |
+
|
| 2042 |
+
# Register advanced archetypes
|
| 2043 |
+
archetypes_created = 0
|
| 2044 |
+
for archetype, tech in create_advanced_archetypes():
|
| 2045 |
+
engine.register_archetype(archetype, tech)
|
| 2046 |
+
archetypes_created += 1
|
| 2047 |
+
|
| 2048 |
+
print(f"✓ Registered {archetypes_created} advanced archetypes")
|
| 2049 |
+
|
| 2050 |
+
# Run comprehensive analysis
|
| 2051 |
+
print("\n1. COMPREHENSIVE ARCHEYPAL STRENGTH ANALYSIS:")
|
| 2052 |
+
results = engine.prove_consciousness_architecture()
|
| 2053 |
+
print(results.to_string(index=False))
|
| 2054 |
+
|
| 2055 |
+
print("\n2. ADVANCED CULTURAL DIAGNOSTIC:")
|
| 2056 |
+
diagnostic = engine.generate_cultural_diagnostic()
|
| 2057 |
+
|
| 2058 |
+
# Print key diagnostic information
|
| 2059 |
+
print(f"Global Resonance Index: {diagnostic['collective_consciousness']['global_resonance_index']:.3f}")
|
| 2060 |
+
print(f"Consciousness Coherence: {diagnostic['consciousness_coherence_index']['overall']:.3f}")
|
| 2061 |
+
print(f"Cultural Clusters: {len(diagnostic['resonance_analysis']['cultural_clusters'])}")
|
| 2062 |
+
print(f"Strongly Entangled Pairs: {len(diagnostic['quantum_entanglement']['strongly_entangled_pairs'])}")
|
| 2063 |
+
|
| 2064 |
+
print("\n3. CONSCIOUSNESS TECHNOLOGY ACTIVATION:")
|
| 2065 |
+
activation_results = engine.activate_consciousness_network(
|
| 2066 |
+
["Solar_Consciousness", "Feminine_Divine"],
|
| 2067 |
+
intensity=0.8,
|
| 2068 |
+
duration=2.0
|
| 2069 |
+
)
|
| 2070 |
+
print(f"Network Activation Success: {activation_results['successful_activations']}/{activation_results['total_activations']}")
|
| 2071 |
+
print(f"Network Coherence: {activation_results['network_coherence']:.3f}")
|
| 2072 |
+
|
| 2073 |
+
if activation_results['emergent_phenomena']:
|
| 2074 |
+
print(f"Emergent Phenomena: {activation_results['emergent_phenomena']['type']}")
|
| 2075 |
+
|
| 2076 |
+
print("\n4. SYSTEM PERFORMANCE REPORT:")
|
| 2077 |
+
performance = engine.get_system_performance_report()
|
| 2078 |
+
print(f"System Status: {performance['system_status']}")
|
| 2079 |
+
print(f"Performance Trend: {performance['performance_trend']}")
|
| 2080 |
+
print(f"Data Integrity: {performance['performance_metrics']['data_integrity']:.3f}")
|
| 2081 |
+
|
| 2082 |
+
print("\n5. MUTATION PREDICTIONS:")
|
| 2083 |
+
mutation_scenarios = engine.mutation_engine.generate_mutation_scenarios("Warrior_Protector")
|
| 2084 |
+
for pressure, scenario in mutation_scenarios.items():
|
| 2085 |
+
if scenario:
|
| 2086 |
+
print(f"{pressure}: {scenario['most_likely']['mutated_form']} "
|
| 2087 |
+
f"(confidence: {scenario['most_likely']['confidence']:.3f})")
|
| 2088 |
+
|
| 2089 |
+
print("\n=== SYSTEM INITIALIZATION COMPLETE ===")
|
| 2090 |
+
print("Universal Archetypal Transmission Engine v9.0 is now operational.")
|
| 2091 |
+
print("Ready for advanced consciousness research and cultural analysis.")
|