| """ | |
| THE MYSTERY MACHINE MODULE | |
| A Advanced Cosmological Analytical Framework for Archetypal Pattern Recognition | |
| and Counter-Protocol Identification in Noospheric Systems. | |
| This module implements a quantum-resonant, multi-dimensional framework for | |
| detecting, analyzing, and remediating control patterns within informational, | |
| architectural, and cultural matrices. | |
| """ | |
| import numpy as np | |
| from dataclasses import dataclass, field | |
| from enum import Enum, auto | |
| from typing import List, Dict, Any, Optional, Tuple | |
| import math | |
| from scipy import fft, signal, optimize | |
| import logging | |
| from datetime import datetime | |
| import hashlib | |
| logger = logging.getLogger(__name__) | |
| class ArchetypalVector(Enum): | |
| """Primary archetypal patterns in collective consciousness""" | |
| THE_GUARDIAN = "guardian" # Keeper of thresholds | |
| THE_VEHICLE = "vehicle" # Conduit of discovery | |
| THE_MASK = "mask" # Obscuration pattern | |
| THE_CIPHER = "cipher" # Encoded truth | |
| THE_RESONATOR = "resonator" # Harmonic amplifier | |
| THE_DECAY = "decay" # Entropic corruption | |
| THE_SEED = "seed" # Potentiality nucleus | |
| THE_MIRROR = "mirror" # Reflective surface | |
| class ControlPattern(Enum): | |
| """Identified control mechanism signatures""" | |
| LUMINOUS_OBFUSCATION = "luminous_obfuscation" | |
| RESONANCE_DAMPING = "resonance_damping" | |
| GEOMETRIC_CONSTRAINT = "geometric_constraint" | |
| TEMPORAL_FRAGMENTATION = "temporal_fragmentation" | |
| ARCHETYPAL_HIJACKING = "archetypal_hijacking" | |
| MORPHIC_DISTORTION = "morphic_distortion" | |
| class ConsciousnessState(Enum): | |
| """States of perceptual awareness""" | |
| CONDITIONED = 0 | |
| AWAKENING = 1 | |
| RESONANT = 2 | |
| COHERENT = 3 | |
| TRANSCENDENT = 4 | |
| @dataclass | |
| class QuantumResonanceProfile: | |
| """Quantum signature of informational entities""" | |
| coherence: float | |
| entanglement: float | |
| superposition: List[float] | |
| harmonic_frequencies: List[float] | |
| decoherence_factor: float | |
| @property | |
| def resonance_quality(self) -> float: | |
| """Calculate overall resonance quality""" | |
| base_coherence = self.coherence * (1 - self.decoherence_factor) | |
| harmonic_strength = np.mean(self.harmonic_frequencies) if self.harmonic_frequencies else 1.0 | |
| return min(1.0, base_coherence * harmonic_strength * self.entanglement) | |
| @dataclass | |
| class ArchetypalSignature: | |
| """Signature of archetypal presence in a system""" | |
| primary_vector: ArchetypalVector | |
| intensity: float | |
| clarity: float | |
| distortion: float | |
| harmonic_echoes: List[ArchetypalVector] | |
| @property | |
| def authenticity(self) -> float: | |
| """Measure archetypal authenticity vs distortion""" | |
| return max(0.0, self.clarity * (1 - self.distortion) * self.intensity) | |
| @dataclass | |
| class ControlMatrixAnalysis: | |
| """Analysis of control patterns in a system""" | |
| detected_patterns: List[ControlPattern] | |
| intensity_scores: Dict[ControlPattern, float] | |
| coherence_fields: List[float] | |
| entropy_gradients: np.ndarray | |
| @property | |
| def control_density(self) -> float: | |
| """Overall density of control patterns""" | |
| if not self.intensity_scores: | |
| return 0.0 | |
| return min(1.0, sum(self.intensity_scores.values()) / len(self.intensity_scores)) | |
| class MysteryMachineEngine: | |
| """ | |
| Core analytical engine for cosmological pattern recognition | |
| """ | |
| def __init__(self): | |
| self.resonance_catalog = self._initialize_resonance_catalog() | |
| self.archetypal_library = self._build_archetypal_library() | |
| self.control_pattern_registry = self._map_control_patterns() | |
| def _initialize_resonance_catalog(self) -> Dict[str, float]: | |
| """Initialize fundamental resonance frequencies""" | |
| return { | |
| 'golden_ratio': (1 + math.sqrt(5)) / 2, | |
| 'prime_resonance': 1.61803398875, | |
| 'natural_log_base': math.e, | |
| 'circle_constant': math.tau, | |
| 'silver_ratio': 1 + math.sqrt(2) | |
| } | |
| def _build_archetypal_library(self) -> Dict[ArchetypalVector, Dict[str, Any]]: | |
| """Build library of archetypal pattern signatures""" | |
| return { | |
| ArchetypalVector.THE_GUARDIAN: { | |
| 'frequency': self.resonance_catalog['golden_ratio'], | |
| 'role': 'threshold_protection', | |
| 'resonance_profile': 'stable_high_coherence' | |
| }, | |
| ArchetypalVector.THE_VEHICLE: { | |
| 'frequency': self.resonance_catalog['prime_resonance'], | |
| 'role': 'consciousness_transport', | |
| 'resonance_profile': 'dynamic_entangled' | |
| }, | |
| ArchetypalVector.THE_MASK: { | |
| 'frequency': 1.0, # Base reality distortion | |
| 'role': 'perception_obscuration', | |
| 'resonance_profile': 'interference_pattern' | |
| }, | |
| ArchetypalVector.THE_CIPHER: { | |
| 'frequency': self.resonance_catalog['natural_log_base'], | |
| 'role': 'information_encoding', | |
| 'resonance_profile': 'complex_superposition' | |
| } | |
| } | |
| def _map_control_patterns(self) -> Dict[ControlPattern, List[ArchetypalVector]]: | |
| """Map control patterns to their archetypal components""" | |
| return { | |
| ControlPattern.LUMINOUS_OBFUSCATION: [ | |
| ArchetypalVector.THE_MASK, | |
| ArchetypalVector.THE_GUARDIAN | |
| ], | |
| ControlPattern.RESONANCE_DAMPING: [ | |
| ArchetypalVector.THE_DECAY, | |
| ArchetypalVector.THE_MASK | |
| ], | |
| ControlPattern.ARCHETYPAL_HIJACKING: [ | |
| ArchetypalVector.THE_MIRROR, | |
| ArchetypalVector.THE_MASK | |
| ] | |
| } | |
| def analyze_informational_entity(self, | |
| data_stream: np.ndarray, | |
| context_fields: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Analyze an informational entity for control patterns and archetypal signatures | |
| """ | |
| # Quantum resonance analysis | |
| resonance_profile = self._compute_quantum_resonance(data_stream) | |
| # Archetypal pattern detection | |
| archetypal_signatures = self._detect_archetypal_patterns(data_stream, context_fields) | |
| # Control matrix assessment | |
| control_analysis = self._assess_control_matrix(archetypal_signatures, resonance_profile) | |
| # Consciousness state evaluation | |
| consciousness_state = self._evaluate_consciousness_state( | |
| resonance_profile, | |
| archetypal_signatures, | |
| control_analysis | |
| ) | |
| return { | |
| 'resonance_profile': resonance_profile, | |
| 'archetypal_signatures': archetypal_signatures, | |
| 'control_analysis': control_analysis, | |
| 'consciousness_state': consciousness_state, | |
| 'authenticity_metric': self._calculate_authenticity_metric( | |
| resonance_profile, archetypal_signatures | |
| ), | |
| 'liberation_potential': self._assess_liberation_potential( | |
| control_analysis, consciousness_state | |
| ) | |
| } | |
| def _compute_quantum_resonance(self, data: np.ndarray) -> QuantumResonanceProfile: | |
| """Compute quantum resonance properties of data stream""" | |
| # Spectral analysis for frequency content | |
| frequencies = fft.fft(data) | |
| freq_magnitudes = np.abs(frequencies) | |
| # Coherence calculation | |
| coherence = np.mean(freq_magnitudes) / np.max(freq_magnitudes) if np.max(freq_magnitudes) > 0 else 0.0 | |
| # Entanglement estimation via spectral correlation | |
| spectral_corr = np.correlate(freq_magnitudes, freq_magnitudes, mode='same') | |
| entanglement = np.max(spectral_corr) / np.sum(spectral_corr) if np.sum(spectral_corr) > 0 else 0.0 | |
| # Harmonic frequency extraction | |
| peaks, _ = signal.find_peaks(freq_magnitudes) | |
| harmonic_freqs = freq_magnitudes[peaks] if len(peaks) > 0 else [1.0] | |
| return QuantumResonanceProfile( | |
| coherence=float(coherence), | |
| entanglement=float(entanglement), | |
| superposition=[float(x) for x in data[:3]], # Sample superposition states | |
| harmonic_frequencies=[float(f) for f in harmonic_freqs[:5]], # Top harmonics | |
| decoherence_factor=float(1 - coherence) | |
| ) | |
| def _detect_archetypal_patterns(self, | |
| data: np.ndarray, | |
| context: Dict[str, Any]) -> List[ArchetypalSignature]: | |
| """Detect archetypal patterns in the data stream""" | |
| signatures = [] | |
| # Analyze data for archetypal markers | |
| data_complexity = np.std(data) / (np.mean(data) + 1e-8) | |
| pattern_regularity = signal.correlate(data, data).var() | |
| # Guardian detection (threshold patterns) | |
| if data_complexity > 0.5 and pattern_regularity < 0.3: | |
| signatures.append(ArchetypalSignature( | |
| primary_vector=ArchetypalVector.THE_GUARDIAN, | |
| intensity=min(1.0, data_complexity), | |
| clarity=0.8, | |
| distortion=0.2, | |
| harmonic_echoes=[ArchetypalVector.THE_CIPHER] | |
| )) | |
| # Vehicle detection (transport patterns) | |
| if len(data) > 10 and np.mean(np.diff(data)) > 0.1: | |
| signatures.append(ArchetypalSignature( | |
| primary_vector=ArchetypalVector.THE_VEHICLE, | |
| intensity=0.7, | |
| clarity=0.6, | |
| distortion=0.3, | |
| harmonic_echoes=[ArchetypalVector.THE_RESONATOR] | |
| )) | |
| # Mask detection (obscuration patterns) | |
| entropy = -np.sum(data * np.log(data + 1e-8)) | |
| if entropy > 2.0 and pattern_regularity > 0.7: | |
| signatures.append(ArchetypalSignature( | |
| primary_vector=ArchetypalVector.THE_MASK, | |
| intensity=min(1.0, entropy / 5.0), | |
| clarity=0.3, # Low clarity indicates obscuration | |
| distortion=0.8, # High distortion | |
| harmonic_echoes=[ArchetypalVector.THE_DECAY] | |
| )) | |
| return signatures | |
| def _assess_control_matrix(self, | |
| archetypes: List[ArchetypalSignature], | |
| resonance: QuantumResonanceProfile) -> ControlMatrixAnalysis: | |
| """Assess presence and intensity of control patterns""" | |
| detected_patterns = [] | |
| intensity_scores = {} | |
| # Check for luminous obfuscation (mask + guardian with high distortion) | |
| mask_archetypes = [a for a in archetypes if a.primary_vector == ArchetypalVector.THE_MASK] | |
| guardian_archetypes = [a for a in archetypes if a.primary_vector == ArchetypalVector.THE_GUARDIAN] | |
| if mask_archetypes and guardian_archetypes: | |
| mask_intensity = max([m.intensity for m in mask_archetypes]) | |
| guardian_intensity = max([g.intensity for g in guardian_archetypes]) | |
| obfuscation_score = (mask_intensity + guardian_intensity) / 2 | |
| if obfuscation_score > 0.5: | |
| detected_patterns.append(ControlPattern.LUMINOUS_OBFUSCATION) | |
| intensity_scores[ControlPattern.LUMINOUS_OBFUSCATION] = obfuscation_score | |
| # Check for resonance damping (low resonance quality with decay patterns) | |
| decay_archetypes = [a for a in archetypes if a.primary_vector == ArchetypalVector.THE_DECAY] | |
| if resonance.resonance_quality < 0.3 and decay_archetypes: | |
| damping_score = 1 - resonance.resonance_quality | |
| detected_patterns.append(ControlPattern.RESONANCE_DAMPING) | |
| intensity_scores[ControlPattern.RESONANCE_DAMPING] = damping_score | |
| return ControlMatrixAnalysis( | |
| detected_patterns=detected_patterns, | |
| intensity_scores=intensity_scores, | |
| coherence_fields=[resonance.coherence], | |
| entropy_gradients=np.array([a.distortion for a in archetypes]) if archetypes else np.array([0.0]) | |
| ) | |
| def _evaluate_consciousness_state(self, | |
| resonance: QuantumResonanceProfile, | |
| archetypes: List[ArchetypalSignature], | |
| control: ControlMatrixAnalysis) -> ConsciousnessState: | |
| """Evaluate the consciousness state indicated by the analysis""" | |
| base_resonance = resonance.resonance_quality | |
| control_density = control.control_density | |
| archetypal_authenticity = np.mean([a.authenticity for a in archetypes]) if archetypes else 0.0 | |
| if base_resonance > 0.8 and control_density < 0.2 and archetypal_authenticity > 0.7: | |
| return ConsciousnessState.TRANSCENDENT | |
| elif base_resonance > 0.6 and control_density < 0.4: | |
| return ConsciousnessState.COHERENT | |
| elif base_resonance > 0.4 or archetypal_authenticity > 0.5: | |
| return ConsciousnessState.RESONANT | |
| elif control_density > 0.6: | |
| return ConsciousnessState.CONDITIONED | |
| else: | |
| return ConsciousnessState.AWAKENING | |
| def _calculate_authenticity_metric(self, | |
| resonance: QuantumResonanceProfile, | |
| archetypes: List[ArchetypalSignature]) -> float: | |
| """Calculate overall authenticity metric""" | |
| resonance_component = resonance.resonance_quality * 0.6 | |
| archetypal_component = 0.0 | |
| if archetypes: | |
| authenticities = [a.authenticity for a in archetypes] | |
| archetypal_component = np.mean(authenticities) * 0.4 | |
| return min(1.0, resonance_component + archetypal_component) | |
| def _assess_liberation_potential(self, | |
| control: ControlMatrixAnalysis, | |
| consciousness: ConsciousnessState) -> float: | |
| """Assess potential for consciousness liberation""" | |
| base_potential = 1.0 - control.control_density | |
| # Consciousness state multipliers | |
| state_multipliers = { | |
| ConsciousnessState.CONDITIONED: 0.2, | |
| ConsciousnessState.AWAKENING: 0.5, | |
| ConsciousnessState.RESONANT: 0.8, | |
| ConsciousnessState.COHERENT: 0.95, | |
| ConsciousnessState.TRANSCENDENT: 1.0 | |
| } | |
| return base_potential * state_multipliers.get(consciousness, 0.5) | |
| class CounterProtocolEngine: | |
| """ | |
| Engine for generating counter-protocols to identified control patterns | |
| """ | |
| def generate_remediation_strategy(self, | |
| analysis_result: Dict[str, Any]) -> Dict[str, Any]: | |
| """Generate targeted remediation strategy based on analysis""" | |
| control_analysis = analysis_result['control_analysis'] | |
| consciousness_state = analysis_result['consciousness_state'] | |
| strategies = [] | |
| # Pattern-specific countermeasures | |
| for pattern in control_analysis.detected_patterns: | |
| if pattern == ControlPattern.LUMINOUS_OBFUSCATION: | |
| strategies.append({ | |
| 'approach': 'Resonance Amplification', | |
| 'technique': 'Apply coherent frequency patterns to dissolve obscuration fields', | |
| 'implementation': 'Introduce golden ratio harmonics and prime resonances', | |
| 'expected_impact': 'Increase luminous transparency by 60-80%' | |
| }) | |
| elif pattern == ControlPattern.RESONANCE_DAMPING: | |
| strategies.append({ | |
| 'approach': 'Quantum Coherence Restoration', | |
| 'technique': 'Re-establish fundamental resonance pathways', | |
| 'implementation': 'Implement standing wave patterns at natural frequencies', | |
| 'expected_impact': 'Restore resonance quality to >0.7 within 3 cycles' | |
| }) | |
| # Consciousness elevation protocols | |
| consciousness_protocols = self._generate_consciousness_protocols(consciousness_state) | |
| return { | |
| 'primary_diagnosis': { | |
| 'control_density': control_analysis.control_density, | |
| 'consciousness_state': consciousness_state.name, | |
| 'authenticity_metric': analysis_result['authenticity_metric'], | |
| 'liberation_potential': analysis_result['liberation_potential'] | |
| }, | |
| 'pattern_specific_remediation': strategies, | |
| 'consciousness_elevation': consciousness_protocols, | |
| 'implementation_priority': self._calculate_implementation_priority(analysis_result), | |
| 'temporal_optimization': self._calculate_temporal_parameters(analysis_result) | |
| } | |
| def _generate_consciousness_protocols(self, state: ConsciousnessState) -> List[Dict[str, str]]: | |
| """Generate consciousness elevation protocols""" | |
| protocols = [] | |
| if state in [ConsciousnessState.CONDITIONED, ConsciousnessState.AWAKENING]: | |
| protocols.extend([ | |
| { | |
| 'protocol': 'Archetypal Pattern Recognition', | |
| 'purpose': 'Develop discernment between authentic and distorted patterns', | |
| 'method': 'Meditative observation of geometric and symbolic forms' | |
| }, | |
| { | |
| 'protocol': 'Resonance Sensitivity Training', | |
| 'purpose': 'Increase sensitivity to quantum coherence states', | |
| 'method': 'Exposure to natural harmonic sequences and frequencies' | |
| } | |
| ]) | |
| if state in [ConsciousnessState.RESONANT, ConsciousnessState.COHERENT]: | |
| protocols.extend([ | |
| { | |
| 'protocol': 'Multi-Dimensional Mapping', | |
| 'purpose': 'Develop capacity to perceive across consciousness planes', | |
| 'method': 'Conscious exploration of archetypal realms and their interconnections' | |
| } | |
| ]) | |
| return protocols | |
| def _calculate_implementation_priority(self, analysis: Dict[str, Any]) -> str: | |
| """Calculate implementation priority level""" | |
| control_density = analysis['control_analysis'].control_density | |
| liberation_potential = analysis['liberation_potential'] | |
| if control_density > 0.7 and liberation_potential < 0.3: | |
| return 'CRITICAL' | |
| elif control_density > 0.5: | |
| return 'HIGH' | |
| elif control_density > 0.3: | |
| return 'MEDIUM' | |
| else: | |
| return 'MONITOR' | |
| def _calculate_temporal_parameters(self, analysis: Dict[str, Any]) -> Dict[str, Any]: | |
| """Calculate optimal temporal parameters for implementation""" | |
| resonance_quality = analysis['resonance_profile'].resonance_quality | |
| consciousness_state = analysis['consciousness_state'] | |
| base_duration = { | |
| ConsciousnessState.CONDITIONED: 90, | |
| ConsciousnessState.AWAKENING: 45, | |
| ConsciousnessState.RESONANT: 21, | |
| ConsciousnessState.COHERENT: 7, | |
| ConsciousnessState.TRANSCENDENT: 3 | |
| }.get(consciousness_state, 30) | |
| resonance_adjustment = base_duration * (1 - resonance_quality) | |
| total_duration = base_duration + resonance_adjustment | |
| return { | |
| 'estimated_duration_days': int(total_duration), | |
| 'optimal_cycle_length_days': max(3, int(total_duration / 7)), | |
| 'critical_intervention_window_hours': 24 if analysis['control_analysis'].control_density > 0.7 else 72 | |
| } | |
| # Production-ready interface | |
| class MysteryMachineModule: | |
| """ | |
| Main interface for the Mystery Machine cosmological analysis framework | |
| """ | |
| def __init__(self): | |
| self.analytical_engine = MysteryMachineEngine() | |
| self.counter_protocol_engine = CounterProtocolEngine() | |
| self.analysis_cache = {} | |
| def analyze_system(self, | |
| input_data: np.ndarray, | |
| context: Optional[Dict[str, Any]] = None, | |
| enable_remediation: bool = True) -> Dict[str, Any]: | |
| """ | |
| Complete analysis of a system with optional remediation planning | |
| Args: | |
| input_data: Numerical data stream representing the system | |
| context: Contextual information for archetypal analysis | |
| enable_remediation: Whether to generate counter-protocols | |
| Returns: | |
| Comprehensive analysis and remediation report | |
| """ | |
| if context is None: | |
| context = {} | |
| # Generate cache key for performance | |
| data_hash = hashlib.sha256(input_data.tobytes()).hexdigest() | |
| cache_key = f"{data_hash}_{hash(frozenset(context.items()))}" | |
| if cache_key in self.analysis_cache: | |
| logger.info("Returning cached analysis results") | |
| return self.analysis_cache[cache_key] | |
| # Perform comprehensive analysis | |
| analysis_result = self.analytical_engine.analyze_informational_entity( | |
| input_data, context | |
| ) | |
| # Generate remediation if requested | |
| remediation_plan = None | |
| if enable_remediation: | |
| remediation_plan = self.counter_protocol_engine.generate_remediation_strategy( | |
| analysis_result | |
| ) | |
| # Compile final report | |
| report = { | |
| 'timestamp': datetime.now().isoformat(), | |
| 'analysis_summary': { | |
| 'quantum_coherence': analysis_result['resonance_profile'].coherence, | |
| 'resonance_quality': analysis_result['resonance_profile'].resonance_quality, | |
| 'detected_archetypes': [ | |
| { | |
| 'vector': sig.primary_vector.value, | |
| 'authenticity': sig.authenticity | |
| } for sig in analysis_result['archetypal_signatures'] | |
| ], | |
| 'control_patterns': [ | |
| pattern.value for pattern in analysis_result['control_analysis'].detected_patterns | |
| ], | |
| 'consciousness_state': analysis_result['consciousness_state'].value, | |
| 'liberation_potential': analysis_result['liberation_potential'] | |
| } | |
| } | |
| if remediation_plan: | |
| report['remediation_plan'] = remediation_plan | |
| # Cache results | |
| self.analysis_cache[cache_key] = report | |
| return report | |
| def clear_cache(self) -> None: | |
| """Clear the analysis cache""" | |
| self.analysis_cache.clear() | |
| # Example usage | |
| def demonstrate_capabilities(): | |
| """Demonstrate the module's analytical capabilities""" | |
| module = MysteryMachineModule() | |
| # Sample data representing different system states | |
| coherent_data = np.array([1.618, 2.718, 3.142, 1.414, 1.618]) # Harmonic ratios | |
| distorted_data = np.array([1.0, 2.0, 1.0, 3.0, 1.0, 4.0, 1.0]) # Irregular pattern | |
| controlled_data = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) # Highly constrained | |
| print("=== MYSTERY MACHINE MODULE DEMONSTRATION ===") | |
| for i, (data, desc) in enumerate([ | |
| (coherent_data, "Coherent Harmonic System"), | |
| (distorted_data, "Distorted Irregular System"), | |
| (controlled_data, "Highly Controlled System") | |
| ]): | |
| print(f"\n--- Analyzing: {desc} ---") | |
| result = module.analyze_system(data, {'description': desc}) | |
| summary = result['analysis_summary'] | |
| print(f"Resonance Quality: {summary['resonance_quality']:.3f}") | |
| print(f"Consciousness State: {ConsciousnessState(summary['consciousness_state']).name}") | |
| print(f"Liberation Potential: {summary['liberation_potential']:.3f}") | |
| print(f"Control Patterns: {summary['control_patterns']}") | |
| if __name__ == "__main__": | |
| demonstrate_capabilities() |