--- license: apache-2.0 language: - zh - en pipeline_tag: text-generation tags: - speculative-decoding - eagle - qwen base_model: - Qwen/Qwen3-4B-Instruct-2507 ---
English | 中文
# EAGLE-3 Draft Model for Qwen3-4B-Instruct-2507 ## Model Overview This repository contains an **EAGLE-3 style draft model** specifically trained to accelerate the inference of the `Qwen3-4B-Instruct-2507` large language model. This is **not a standalone model**. It must be used in conjunction with its corresponding base model (`Qwen3-4B-Instruct-2507`) within a speculative decoding framework to achieve significant speedups in text generation. - **Base Model:** `Qwen3-4B-Instruct-2507` - **Model Architecture:** EAGLE-3 (Speculative Decoding Draft Model) - **Primary Benefit:** Accelerates text generation throughput by 1.5x to 2.5x without compromising the generation quality of the base model. ## What is EAGLE? EAGLE (Extrapolative A* Generative Language Engine) is an advanced speculative decoding method. It uses a small draft model to generate a sequence of draft tokens in parallel. These tokens are then verified by the larger, more powerful base model in a single forward pass. If the draft is accepted, the generation process advances multiple steps at once, leading to a substantial increase in speed. This model serves as the "draft model" in this process. Its average acceptance length (`acc_length`) on standard benchmarks is approximately **2.08 tokens** (with 4 draft tokens), meaning on average, it helps the base model advance over 2 tokens per verification step. ## Performance This model was evaluated on a diverse set of benchmarks. The `acc_length` (average number of accepted draft tokens) indicates the efficiency of the acceleration. A higher value is better. | Benchmark | `acc_length` (num_draft_tokens=4) | | :--------- | :-------------------------------: | | gsm8k | 2.22 | | humaneval | 2.29 | | math500 | 2.27 | | cmmlu | 1.94 | | ceval | 1.93 | | mtbench | 1.85 | | **Average**| **~2.08** | These results demonstrate consistent and effective acceleration across various tasks, including coding, math, and general conversation. ## Training Details - **Training Framework:** This model was trained using **[SpecForge](https://github.com/sgl-project/SpecForge)**, an open-source framework for speculative decoding research. - **Training Data:** The model was trained on the **EagleChat** dataset. Available on [Hugging Face](https://huggingface.co/datasets/zhaode/EagleChat) and [ModelScope](https://modelscope.cn/datasets/zhaode/EagleChat). - **Training Duration:** The model was trained for 3 epochs on 8x MI308X GPUs, which took 56 hours and totaled 448 `MI308X GPU-hours`.
---
# 适用于 Qwen3-4B-Instruct-2507 的 EAGLE-3 草稿模型 ## 模型简介 本仓库包含一个 **EAGLE-3 风格的草稿模型**,专为加速 `Qwen3-4B-Instruct-2507` 大语言模型的推理而训练。 请注意:这是一个**非独立模型**。它必须与对应的基座模型 (`Qwen3-4B-Instruct-2507`) 在推测解码 (speculative decoding) 框架下配合使用,才能实现显著的文本生成加速效果。 - **基座模型:** `Qwen3-4B-Instruct-2507` - **模型架构:** EAGLE-3 (推测解码草稿模型) - **核心优势:** 在不牺牲基座模型生成质量的前提下,将文本生成吞吐量提升 1.5 到 2.5 倍。 ## 什么是 EAGLE? EAGLE (Extrapolative A* Generative Language Engine) 是一种先进的推测解码方法。它利用一个轻量的草稿模型并行生成一系列草稿词元 (draft tokens),然后由更大、更强的基座模型通过单次前向传播进行验证。如果草稿被接受,生成过程就能一次性前进多个步骤,从而实现显著的速度提升。 本模型在此过程中扮演“草稿模型”的角色。它在标准评测基准上的平均接受长度 (`acc_length`) 约为 **2.08 个词元** (在草稿长度为4时),这意味着在每次验证中,它平均能帮助基座模型推进超过 2 个词元。 ## 性能表现 本模型在一系列多样化的评测基准上进行了评估。`acc_length` (平均接受的草稿词元数) 反映了加速的效率,数值越高越好。 | 评测基准 (Benchmark) | `acc_length` (num_draft_tokens=4) | | :------------------ | :-------------------------------: | | gsm8k | 2.22 | | humaneval | 2.29 | | math500 | 2.27 | | cmmlu | 1.94 | | ceval | 1.93 | | mtbench | 1.85 | | **平均值** | **~2.08** | 这些结果表明,该模型在编码、数学和通用对话等不同任务上都能提供稳定且高效的加速效果。 ## 训练细节 - **训练框架:** 本模型使用开源推测解码研究框架 **[SpecForge](https://github.com/sgl-project/SpecForge)** 进行训练。 - **训练数据:** 训练数据使用了 **EagleChat** 数据集。您可以在 [Hugging Face](https://huggingface.co/datasets/zhaode/EagleChat) 或 [ModelScope](https://modelscope.cn/datasets/zhaode/EagleChat) 上获取该数据集。 - **训练耗时:** 训练使用 8x MI308X 训练 3 轮,耗时 56 小时,共 448 `MI308X 卡时`。