tao-hunter commited on
Commit
269a6d8
·
verified ·
1 Parent(s): 931d367

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -218
README.md DELETED
@@ -1,218 +0,0 @@
1
- ---
2
- license: other
3
- license_name: bria-rmbg-2.0
4
- license_link: https://creativecommons.org/licenses/by-nc/4.0/deed.en
5
- pipeline_tag: image-segmentation
6
- tags:
7
- - remove background
8
- - background
9
- - background-removal
10
- - Pytorch
11
- - vision
12
- - legal liability
13
- - transformers
14
- - transformers.js
15
- extra_gated_description: >-
16
- Bria AI Model weights are open source for non commercial use only, per the
17
- provided [license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
18
- extra_gated_heading: Fill in this form to immediatly access the model for non commercial use
19
- extra_gated_fields:
20
- Name: text
21
- Email: text
22
- Company/Org name: text
23
- Company Website URL: text
24
- Discord user: text
25
- I agree to BRIA’s Privacy policy, Terms & conditions, and acknowledge Non commercial use to be Personal use / Academy / Non profit (direct or indirect): checkbox
26
- ---
27
-
28
- # BRIA Background Removal v2.0 Model Card
29
- <p align="center"><img src="https://platform.bria.ai/assets/Bria-logo-5e0c53b1.svg" alt="BRIA Logo" width="200" /></p>
30
-
31
- <!-- RMBG Card wrapper -->
32
- <div class="rmbg-card" style="position: relative; border-radius: 12px; overflow: hidden;">
33
-
34
- <!-- FIBO Promo Banner (Top) -->
35
- <a
36
- href="https://huggingface.co/briaai/FIBO"
37
- target="_blank"
38
- rel="noopener"
39
- aria-label="Explore FIBO on Hugging Face"
40
- style="
41
- position: absolute;
42
- top: 0;
43
- left: 0;
44
- width: 100%;
45
- display: flex;
46
- align-items: center;
47
- justify-content: center;
48
- gap: 10px;
49
- background: linear-gradient(90deg, #fff6b7 0%, #fde047 100%);
50
- color: #1f2937;
51
- text-decoration: none;
52
- font-family: Inter, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif;
53
- font-weight: 600;
54
- font-size: 13px;
55
- padding: 10px 0;
56
- border-bottom: 1px solid rgba(0,0,0,0.08);
57
- box-shadow: 0 2px 8px rgba(0,0,0,0.08);
58
- z-index: 10;
59
- ">
60
- <img
61
- src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
62
- alt="Hugging Face"
63
- width="18"
64
- height="18"
65
- style="display:block"
66
- />
67
- <span>✨ Discover <strong>FIBO</strong> on Hugging Face</span>
68
- </a>
69
-
70
- <!-- ... your RMBG content below ... -->
71
- <p align="center">
72
- 💜 <a href="https://go.bria.ai/46gzn20"><b>Bria AI</b></a>&nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/briaai/">Hugging Face</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://blog.bria.ai/">Blog</a> &nbsp&nbsp
73
- <br>
74
- 🖥️ <a href="https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0">Demo</a>&nbsp&nbsp| &nbsp&nbsp <a href="https://github.com/Bria-AI/RMBG-2.0">Github</a>&nbsp&nbsp
75
- </p>
76
-
77
- RMBG v2.0 is our new state-of-the-art background removal model significantly improves RMBG v1.4. The model is designed to effectively separate foreground from background in a range of
78
- categories and image types. This model has been trained on a carefully selected dataset, which includes:
79
- general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale.
80
- The accuracy, efficiency, and versatility currently rival leading source-available models.
81
- It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount.
82
-
83
- Developed by BRIA AI, RMBG v2.0 is available as a source-available model for non-commercial use.
84
-
85
- ### Get Access
86
-
87
- Bria RMBG2.0 is availabe everywhere you build, either as source-code and weights, ComfyUI nodes or API endpoints.
88
-
89
- - **Purchase:** To purchase a commercial license for RMBG V2.0 **or** an API package [Click Here](https://share-eu1.hsforms.com/2sj9FVZTGSFmFRibDLhr_ZAf4e04).
90
- - **API Endpoint**: [Bria.ai](https://docs.bria.ai/image-editing/v2-endpoints/background-remove), [fal.ai](https://fal.ai/models/fal-ai/bria/background/remove), [Replicate](https://replicate.com/bria/remove-background)
91
- - **ComfyUI**: [Use it in workflows](https://github.com/Bria-AI/ComfyUI-BRIA-API)
92
- - **GitHub**: [github.com/Bria-AI/RMBG-2.0](https://github.com/Bria-AI/RMBG-2.0)
93
-
94
- For more information, please visit our [website](https://bria.ai/).
95
-
96
- Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
97
-
98
- [CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0)
99
-
100
-
101
-
102
- ![examples](t4.png)
103
-
104
- ## Model Details
105
- #####
106
- ### Model Description
107
-
108
- - **Developed by:** [BRIA AI](https://bria.ai/)
109
- - **Model type:** Background Removal
110
- - **License:** [Creative Commons Attribution–Non-Commercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/deed.en)
111
- - The model is released under a CC BY-NC 4.0 license for non-commercial use.
112
- - Commercial use is subject to a commercial agreement with BRIA. Available [here](https://share-eu1.hsforms.com/2sj9FVZTGSFmFRibDLhr_ZAf4e04)
113
-
114
-
115
- - **Model Description:** BRIA RMBG-2.0 is a dichotomous image segmentation model trained exclusively on a professional-grade dataset. The model output includes a single-channel 8-bit grayscale alpha matte, where each pixel value indicates the opacity level of the corresponding pixel in the original image. This non-binary output approach offers developers the flexibility to define custom thresholds for foreground-background separation, catering to varied use cases requirements and enhancing integration into complex pipelines.
116
- - **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/)
117
-
118
-
119
-
120
- ## Training data
121
- Bria-RMBG model was trained with over 15,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
122
- Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities.
123
- For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.
124
-
125
- ### Distribution of images:
126
-
127
- | Category | Distribution |
128
- | -----------------------------------| -----------------------------------:|
129
- | Objects only | 45.11% |
130
- | People with objects/animals | 25.24% |
131
- | People only | 17.35% |
132
- | people/objects/animals with text | 8.52% |
133
- | Text only | 2.52% |
134
- | Animals only | 1.89% |
135
-
136
- | Category | Distribution |
137
- | -----------------------------------| -----------------------------------------:|
138
- | Photorealistic | 87.70% |
139
- | Non-Photorealistic | 12.30% |
140
-
141
-
142
- | Category | Distribution |
143
- | -----------------------------------| -----------------------------------:|
144
- | Non Solid Background | 52.05% |
145
- | Solid Background | 47.95%
146
-
147
-
148
- | Category | Distribution |
149
- | -----------------------------------| -----------------------------------:|
150
- | Single main foreground object | 51.42% |
151
- | Multiple objects in the foreground | 48.58% |
152
-
153
-
154
- ## Qualitative Evaluation
155
- Open source models comparison
156
- ![diagram](diagram1.png)
157
- ![examples](collage5.png)
158
-
159
- ### Architecture
160
- RMBG-2.0 is developed on the [BiRefNet](https://github.com/ZhengPeng7/BiRefNet) architecture enhanced with our proprietary dataset and training scheme. This training data significantly improves the model’s accuracy and effectiveness for background-removal task.<br>
161
- If you use this model in your research, please cite:
162
-
163
- ```
164
- @article{BiRefNet,
165
- title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
166
- author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
167
- journal={CAAI Artificial Intelligence Research},
168
- year={2024}
169
- }
170
- ```
171
-
172
- #### Requirements
173
- ```bash
174
- torch
175
- torchvision
176
- pillow
177
- kornia
178
- transformers
179
- ```
180
-
181
- ### Usage
182
-
183
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
184
-
185
-
186
- ```python
187
- from PIL import Image
188
- import torch
189
- from torchvision import transforms
190
- from transformers import AutoModelForImageSegmentation
191
-
192
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
193
- model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True).eval().to(device)
194
-
195
- # Data settings
196
- image_size = (1024, 1024)
197
- transform_image = transforms.Compose([
198
- transforms.Resize(image_size),
199
- transforms.ToTensor(),
200
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
201
- ])
202
-
203
- image = Image.open(input_image_path)
204
- input_images = transform_image(image).unsqueeze(0).to(device)
205
-
206
- # Prediction
207
- with torch.no_grad():
208
- preds = model(input_images)[-1].sigmoid().cpu()
209
- pred = preds[0].squeeze()
210
- pred_pil = transforms.ToPILImage()(pred)
211
- mask = pred_pil.resize(image.size)
212
- image.putalpha(mask)
213
-
214
- image.save("no_bg_image.png")
215
- ```
216
-
217
-
218
- </div>