--- license: apache-2.0 tags: - kernels - sae --- # Flex SAE Kernels [![ArXiv](https://img.shields.io/badge/arXiv-2505.24473-b31b1b.svg)](https://arxiv.org/abs/2505.24473) Fused Triton implementations of the TopK and HierarchicalTopK sparse autoencoder (SAE) decoder losses described in *Train One Sparse Autoencoder Across Multiple Sparsity Budgets to Preserve Interpretability and Accuracy*. **This work has been accepted to [EMNLP 2025](https://2025.emnlp.org/).** ## What is released? - Fast TopK kernel for SAE (slightly modified version from xformers) `torch-ext/flex_sae/topk_kernels.py` - Fast HierarchicalTopK kernels (see our [paper](https://arxiv.org/abs/2505.24473)) `torch-ext/flex_sae/hierarchical_kernels.py`. ## Quickstart Kernels are available via loading from hub, they have the following signature: ```python from kernels import get_kernel flex = get_kernel('t-tech/flex-sae') top_k_kernel = flex.triton_topk_sae_loss hierarchical_top_k_kernel = flex.triton_hierarchical_sae_loss "B -- batch size, K -- top-k, F -- dictionary size, D -- model hidden dim" loss: torch.Tensor = top_k_kernel( indices: torch.Tensor, # [B, K] weight: torch.Tensor, # [F, D] vals: torch.Tensor, # [B, K] bias: torch.Tensor, # [D] target: torch.Tensor, # [B, D] ) loss: torch.Tensor = hierarchical_top_k_kernel( indices: torch.Tensor, # [B, K] weight: torch.Tensor, # [F, D] vals: torch.Tensor, # [B, K] bias: torch.Tensor, # [D] target: torch.Tensor, # [B, D] ) ``` ## Overview - `torch-ext/flex_sae/` contains the Triton kernels alongside torch reference implementations. - `tests/` hosts CUDA-backed property tests that ensure numerical parity across dtypes and kernels. - `build.toml`, `flake.nix` integrate the project with [Hugging Face kernel-builder](https://github.com/huggingface/kernel-builder). The Triton kernels target CUDA GPUs and focus on reducing the latency gap between TopK and HierarchicalTopK decoders while keeping memory usage flat. ## Example You can find example usage in [example.py](https://huggingface.co/t-tech/flex-sae/blob/main/example.py). ```python # /// script # dependencies = [ # "torch", # "numpy", # "kernels", # ] # /// import torch import numpy as np from kernels import get_kernel flex = get_kernel("t-tech/flex-sae") #Fast Kernels @torch.compile(fullgraph=True) def hierarchical_sae_loss( indices: torch.Tensor, # [B, K] weight: torch.Tensor, # [F, D] vals: torch.Tensor, # [B, K] bias: torch.Tensor, # [D] target: torch.Tensor, # [B, D] ) -> torch.Tensor: emb = weight[indices].to(torch.float32) # [K, D] recon_cum = bias.to(torch.float32) + (emb * vals.unsqueeze(-1)).cumsum(dim=1) diff = recon_cum.to(torch.float32) - target.to(torch.float32).unsqueeze(1) loss = diff.pow(2).mean() return loss B = 2048 K = 256 F = 1024 * 128 D = 1024 WARMUP = 5 NUM_ITER = 100 dtype = torch.float32 vals = None decoder = None bias = None target = None indices = None def init_parameters(): global vals, decoder, bias, target, indices vals = torch.randn(B, K, dtype=dtype, device="cuda").abs().requires_grad_() decoder = torch.randn(F, D, dtype=dtype, device="cuda", requires_grad=True) bias = torch.randn(D, dtype=dtype, device="cuda", requires_grad=True) target = torch.randn(B, D, dtype=dtype, device="cuda") indices = torch.randint(0, F, (B, K), dtype=torch.long, device="cuda") timing_kernel = [] timing_vanilla = [] torch.cuda.reset_peak_memory_stats() loss_kernel_list = torch.zeros((100,)) loss_vanilla_list = torch.zeros((100,)) def zero_grad(): vals.grad = None decoder.grad = None bias.grad = None torch.cuda.empty_cache() for i in range(NUM_ITER + WARMUP): init_parameters() start_kernel = torch.cuda.Event(enable_timing=True) end_kernel = torch.cuda.Event(enable_timing=True) start_vanilla = torch.cuda.Event(enable_timing=True) end_vanilla = torch.cuda.Event(enable_timing=True) start_kernel.record() loss_kernel = flex.triton_hierarchical_sae_loss(indices, decoder, vals, bias, target) loss_kernel.backward() end_kernel.record() zero_grad() start_vanilla.record() loss_vanilla = hierarchical_sae_loss(indices, decoder, vals, bias, target) loss_vanilla.backward() end_vanilla.record() if i >= WARMUP: torch.cuda.synchronize() timing_kernel.append(start_kernel.elapsed_time(end_kernel)) timing_vanilla.append(start_vanilla.elapsed_time(end_vanilla)) loss_kernel_list[i-WARMUP] = loss_kernel.detach() loss_vanilla_list[i-WARMUP] = loss_vanilla.detach() zero_grad() if torch.allclose(loss_kernel, loss_vanilla): print("✅ Outputs are close! Everything is good! 🎉") else: print("❌ Outputs mismatch... ⚠️🤔") print(f"🦎 Triton Kernel Time (Ours): {np.mean(timing_kernel):.4f} ± {np.std(timing_kernel):.4f} ms") print(f"🔥 Torch Compile Kernel Time: {np.mean(timing_vanilla):.4f} ± {np.std(timing_vanilla):.4f} ms") print(f"🚀 Speedup: {np.mean(timing_vanilla) / np.mean(timing_kernel):.2f}x") ``` Run it with `uv run https://huggingface.co/t-tech/flex-sae/resolve/main/example.py`. ## Performance Benchmarks were collected on a workload with dictionary size $F = 65 536$, embedding dimension $D = 2304$, and sparsity budgets $K \in \{32, 64, 128\}$. Latency is reported as time per training step (milliseconds) and memory as peak device usage (GiB). | Decoder backend | K=32 (ms / GiB) | K=64 (ms / GiB) | K=128 (ms / GiB) | | --- | --- | --- | --- | | **Pure torch-compiled** | | | | | TopK | 8.787 / 2.92 | 11.746 / 2.92 | 18.877 / 2.93 | | HierarchicalTopK | 12.824 / 6.29 | 23.379 / 10.79 | 43.851 / 19.80 | | **Triton kernels** | | | | | TopK | 5.576 / 2.92 | 6.339 / 2.92 | 7.961 / 2.93 | | HierarchicalTopK | **6.696 / 2.92** | **7.995 / 2.92** | **10.609 / 2.93** | Across the evaluated sparsity budgets the fused Triton HierarchicalTopK kernel matches TopK kernels on memory use while remaining consistently faster than the reference torch implementation. ## License & Attribution - All files except `torch-ext/flex_sae/topk_kernels.py` are released under the [Apache License 2.0](LICENSE). - `torch-ext/flex_sae/topk_kernels.py` includes code adapted from Facebook Research's [memory](https://github.com/facebookresearch/memory) project, originally published under the Creative Commons Attribution-NonCommercial 4.0 International License. That component therefore remains available for non-commercial use only; see [NOTICE](NOTICE) for details. ## Citation ```bibtex @misc{balagansky2025trainsparseautoencodermultiple, title={Train One Sparse Autoencoder Across Multiple Sparsity Budgets to Preserve Interpretability and Accuracy}, author={Nikita Balagansky and Yaroslav Aksenov and Daniil Laptev and Vadim Kurochkin and Gleb Gerasimov and Nikita Koryagin and Daniil Gavrilov}, year={2025}, eprint={2505.24473}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2505.24473}, } ```