Spaces:
Sleeping
Sleeping
Upload 35 files
Browse files
app.py
CHANGED
|
@@ -69,7 +69,7 @@ def run_camp_vqa(video_path, intra_cross_experiment, is_finetune, train_data_nam
|
|
| 69 |
global model_cache
|
| 70 |
if not model_cache:
|
| 71 |
print("⏳ Loading models into cache... please wait")
|
| 72 |
-
|
| 73 |
model_cache["slowfast"] = SlowFast().to(device)
|
| 74 |
model_cache["swint"] = SwinT(model_name='swin_large_patch4_window7_224', global_pool='avg', pretrained=True).to(device)
|
| 75 |
|
|
@@ -125,14 +125,49 @@ def run_camp_vqa(video_path, intra_cross_experiment, is_finetune, train_data_nam
|
|
| 125 |
|
| 126 |
def update_test_dataset(intra_cross_experiment, train_dataset):
|
| 127 |
"""
|
| 128 |
-
if intra:
|
|
|
|
|
|
|
| 129 |
if cross: show test dataset dropdown
|
| 130 |
"""
|
| 131 |
if intra_cross_experiment == "intra":
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
def toggle_finetune_visibility(intra_cross_experiment, train_dataset):
|
| 138 |
"""
|
|
@@ -148,8 +183,7 @@ with gr.Blocks() as demo:
|
|
| 148 |
"You can try our test video: "
|
| 149 |
"<a href='https://huggingface.co/spaces/xinyiW915/CAMP-VQA/blob/main/ugc_original_videos/0_16_07_500001604801190-yase.mp4' target='_blank'> demo video</a>. "
|
| 150 |
"<br><br>"
|
| 151 |
-
"⚙️ This demo is currently running on <strong>Hugging Face
|
| 152 |
-
# "⚙️ This demo is currently running on <strong>Hugging Face ZeroGPU Space</strong>: Dynamic resources (NVIDIA A100)."
|
| 153 |
)
|
| 154 |
|
| 155 |
with gr.Row():
|
|
@@ -170,7 +204,7 @@ with gr.Blocks() as demo:
|
|
| 170 |
)
|
| 171 |
test_dataset = gr.Dropdown(
|
| 172 |
label="Test Dataset",
|
| 173 |
-
choices=["lsvq_test", "lsvq_test_1080p", "cvd_2014", "konvid_1k", "live_vqc", "youtube_ugc", "finevd", "live_yt_gaming", "kvq"],
|
| 174 |
value="finevd",
|
| 175 |
visible=True
|
| 176 |
)
|
|
@@ -216,4 +250,4 @@ with gr.Blocks() as demo:
|
|
| 216 |
queue=True
|
| 217 |
)
|
| 218 |
|
| 219 |
-
demo.launch()
|
|
|
|
| 69 |
global model_cache
|
| 70 |
if not model_cache:
|
| 71 |
print("⏳ Loading models into cache... please wait")
|
| 72 |
+
|
| 73 |
model_cache["slowfast"] = SlowFast().to(device)
|
| 74 |
model_cache["swint"] = SwinT(model_name='swin_large_patch4_window7_224', global_pool='avg', pretrained=True).to(device)
|
| 75 |
|
|
|
|
| 125 |
|
| 126 |
def update_test_dataset(intra_cross_experiment, train_dataset):
|
| 127 |
"""
|
| 128 |
+
if intra:
|
| 129 |
+
- if train_dataset == lsvq_train → allow to choose test dataset (lsvq_test, lsvq_test_1080p)
|
| 130 |
+
- else: hide test dataset and set to same as train
|
| 131 |
if cross: show test dataset dropdown
|
| 132 |
"""
|
| 133 |
if intra_cross_experiment == "intra":
|
| 134 |
+
if train_dataset == "lsvq_train":
|
| 135 |
+
msg = " Intra LSVQ setting — please select between lsvq_test or lsvq_test_1080p."
|
| 136 |
+
return (
|
| 137 |
+
gr.update(
|
| 138 |
+
choices=["lsvq_test", "lsvq_test_1080p"],
|
| 139 |
+
value="lsvq_test",
|
| 140 |
+
visible=True,
|
| 141 |
+
),
|
| 142 |
+
gr.update(value=msg, visible=True),
|
| 143 |
+
)
|
| 144 |
+
else:
|
| 145 |
+
msg = f" Intra-dataset experiment — test dataset is automatically set to {train_dataset}."
|
| 146 |
+
return (
|
| 147 |
+
gr.update(value=train_dataset, visible=False),
|
| 148 |
+
gr.update(value=msg, visible=True),
|
| 149 |
+
)
|
| 150 |
else:
|
| 151 |
+
# cross: show full test dataset list
|
| 152 |
+
return (
|
| 153 |
+
gr.update(
|
| 154 |
+
choices=[
|
| 155 |
+
"lsvq_train",
|
| 156 |
+
"lsvq_test",
|
| 157 |
+
"lsvq_test_1080p",
|
| 158 |
+
"cvd_2014",
|
| 159 |
+
"konvid_1k",
|
| 160 |
+
"live_vqc",
|
| 161 |
+
"youtube_ugc",
|
| 162 |
+
"finevd",
|
| 163 |
+
"live_yt_gaming",
|
| 164 |
+
"kvq",
|
| 165 |
+
],
|
| 166 |
+
visible=True,
|
| 167 |
+
),
|
| 168 |
+
gr.update(value="", visible=False),
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
|
| 172 |
def toggle_finetune_visibility(intra_cross_experiment, train_dataset):
|
| 173 |
"""
|
|
|
|
| 183 |
"You can try our test video: "
|
| 184 |
"<a href='https://huggingface.co/spaces/xinyiW915/CAMP-VQA/blob/main/ugc_original_videos/0_16_07_500001604801190-yase.mp4' target='_blank'> demo video</a>. "
|
| 185 |
"<br><br>"
|
| 186 |
+
"⚙️ This demo is currently running on <strong>Hugging Face ZeroGPU Space</strong>: Dynamic resources (NVIDIA A100)."
|
|
|
|
| 187 |
)
|
| 188 |
|
| 189 |
with gr.Row():
|
|
|
|
| 204 |
)
|
| 205 |
test_dataset = gr.Dropdown(
|
| 206 |
label="Test Dataset",
|
| 207 |
+
choices=["lsvq_train", "lsvq_test", "lsvq_test_1080p", "cvd_2014", "konvid_1k", "live_vqc", "youtube_ugc", "finevd", "live_yt_gaming", "kvq"],
|
| 208 |
value="finevd",
|
| 209 |
visible=True
|
| 210 |
)
|
|
|
|
| 250 |
queue=True
|
| 251 |
)
|
| 252 |
|
| 253 |
+
demo.launch(share=True)
|
demo_test.py
CHANGED
|
@@ -1,219 +1,226 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
import subprocess
|
| 5 |
-
import json
|
| 6 |
-
import ffmpeg
|
| 7 |
-
import pandas as pd
|
| 8 |
-
import torch
|
| 9 |
-
import torch.nn as nn
|
| 10 |
-
from tqdm import tqdm
|
| 11 |
-
from torchvision import transforms
|
| 12 |
-
import clip
|
| 13 |
-
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 14 |
-
|
| 15 |
-
from extractor.extract_frag import VideoDataset_feature
|
| 16 |
-
from extractor.extract_clip_embeds import extract_features_clip_embed
|
| 17 |
-
from extractor.extract_slowfast_clip import SlowFast, extract_features_slowfast_pool
|
| 18 |
-
from extractor.extract_swint_clip import SwinT, extract_features_swint_pool
|
| 19 |
-
from model_finetune import fix_state_dict
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def get_transform(resize):
|
| 23 |
-
return transforms.Compose([transforms.Resize([resize, resize]),
|
| 24 |
-
transforms.ToTensor(),
|
| 25 |
-
transforms.Normalize(mean=[0.45, 0.45, 0.45], std=[0.225, 0.225, 0.225])])
|
| 26 |
-
|
| 27 |
-
def setup_device(config):
|
| 28 |
-
if config.device == "gpu":
|
| 29 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
-
if device.type == "cuda":
|
| 31 |
-
torch.cuda.set_device(0)
|
| 32 |
-
else:
|
| 33 |
-
device = torch.device("cpu")
|
| 34 |
-
print(f"Running on {'GPU' if device.type == 'cuda' else 'CPU'}")
|
| 35 |
-
return device
|
| 36 |
-
|
| 37 |
-
def load_prompts(json_path):
|
| 38 |
-
with open(json_path, "r", encoding="utf-8") as f:
|
| 39 |
-
return json.load(f)
|
| 40 |
-
|
| 41 |
-
def load_model(config, device, Mlp, input_features=13056):
|
| 42 |
-
model = Mlp(input_features=input_features, out_features=1, drop_rate=0.1, act_layer=nn.GELU).to(device)
|
| 43 |
-
|
| 44 |
-
if config.intra_cross_experiment == 'intra':
|
| 45 |
-
if config.train_data_name == 'lsvq_train':
|
| 46 |
-
if config.test_data_name == 'lsvq_test':
|
| 47 |
-
model_path = os.path.join(config.save_model_path, f"wo_finetune/{config.train_data_name}_{config.network_name}_{config.model_name}_{config.select_criteria}_trained_model_kfold.pth")
|
| 48 |
-
elif config.test_data_name == 'lsvq_test_1080p':
|
| 49 |
-
model_path = os.path.join(config.save_model_path, f"wo_finetune/{config.train_data_name}_{config.network_name}_{config.model_name}_{config.select_criteria}_trained_model_1080p.pth")
|
| 50 |
-
else:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
parser
|
| 155 |
-
|
| 156 |
-
parser.add_argument('--
|
| 157 |
-
parser.add_argument('--
|
| 158 |
-
parser.add_argument('--
|
| 159 |
-
parser.add_argument('--
|
| 160 |
-
|
| 161 |
-
parser.add_argument('--
|
| 162 |
-
|
| 163 |
-
parser.add_argument('--
|
| 164 |
-
parser.add_argument('--
|
| 165 |
-
parser.add_argument('--
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
print("Predicted Quality Score:", quality_prediction)
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import subprocess
|
| 5 |
+
import json
|
| 6 |
+
import ffmpeg
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
from torchvision import transforms
|
| 12 |
+
import clip
|
| 13 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 14 |
+
|
| 15 |
+
from extractor.extract_frag import VideoDataset_feature
|
| 16 |
+
from extractor.extract_clip_embeds import extract_features_clip_embed
|
| 17 |
+
from extractor.extract_slowfast_clip import SlowFast, extract_features_slowfast_pool
|
| 18 |
+
from extractor.extract_swint_clip import SwinT, extract_features_swint_pool
|
| 19 |
+
from model_finetune import fix_state_dict
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_transform(resize):
|
| 23 |
+
return transforms.Compose([transforms.Resize([resize, resize]),
|
| 24 |
+
transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize(mean=[0.45, 0.45, 0.45], std=[0.225, 0.225, 0.225])])
|
| 26 |
+
|
| 27 |
+
def setup_device(config):
|
| 28 |
+
if config.device == "gpu":
|
| 29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
+
if device.type == "cuda":
|
| 31 |
+
torch.cuda.set_device(0)
|
| 32 |
+
else:
|
| 33 |
+
device = torch.device("cpu")
|
| 34 |
+
print(f"Running on {'GPU' if device.type == 'cuda' else 'CPU'}")
|
| 35 |
+
return device
|
| 36 |
+
|
| 37 |
+
def load_prompts(json_path):
|
| 38 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
| 39 |
+
return json.load(f)
|
| 40 |
+
|
| 41 |
+
def load_model(config, device, Mlp, input_features=13056):
|
| 42 |
+
model = Mlp(input_features=input_features, out_features=1, drop_rate=0.1, act_layer=nn.GELU).to(device)
|
| 43 |
+
|
| 44 |
+
if config.intra_cross_experiment == 'intra':
|
| 45 |
+
if config.train_data_name == 'lsvq_train':
|
| 46 |
+
if config.test_data_name == 'lsvq_test':
|
| 47 |
+
model_path = os.path.join(config.save_model_path, f"wo_finetune/{config.train_data_name}_{config.network_name}_{config.model_name}_{config.select_criteria}_trained_model_kfold.pth")
|
| 48 |
+
elif config.test_data_name == 'lsvq_test_1080p':
|
| 49 |
+
model_path = os.path.join(config.save_model_path, f"wo_finetune/{config.train_data_name}_{config.network_name}_{config.model_name}_{config.select_criteria}_trained_model_1080p.pth")
|
| 50 |
+
else:
|
| 51 |
+
raise ValueError(
|
| 52 |
+
"❌ Invalid dataset combination for intra-dataset experiment.\n"
|
| 53 |
+
"👉 When using `intra` with `lsvq_train`, please select test dataset as `lsvq_test` or `lsvq_test_1080p`.\n"
|
| 54 |
+
"If you want to test on another dataset, please switch to the `cross` experiment setting."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
else:
|
| 58 |
+
model_path = os.path.join(config.save_model_path, f"wo_finetune/{config.train_data_name}_{config.network_name}_{config.model_name}_{config.select_criteria}_trained_model.pth")
|
| 59 |
+
|
| 60 |
+
elif config.intra_cross_experiment == 'cross':
|
| 61 |
+
if config.train_data_name == 'lsvq_train':
|
| 62 |
+
if config.is_finetune:
|
| 63 |
+
model_path = os.path.join(config.save_model_path, f"finetune/{config.test_data_name}_{config.network_name}_fine_tuned_model.pth")
|
| 64 |
+
else:
|
| 65 |
+
model_path = os.path.join(config.save_model_path, f"wo_finetune/{config.train_data_name}_{config.network_name}_{config.model_name}_{config.select_criteria}_trained_model_kfold.pth")
|
| 66 |
+
else:
|
| 67 |
+
raise ValueError(
|
| 68 |
+
"❌ Invalid training dataset for cross-dataset experiment.\n"
|
| 69 |
+
"👉 The cross-dataset experiment supports `lsvq_train` as the only training dataset for fine-tuning models.\n"
|
| 70 |
+
"Please set `Train Dataset` to `lsvq_train` to continue."
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
print("Loading model from:", model_path)
|
| 74 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 75 |
+
fixed_state_dict = fix_state_dict(state_dict)
|
| 76 |
+
try:
|
| 77 |
+
model.load_state_dict(fixed_state_dict)
|
| 78 |
+
except RuntimeError as e:
|
| 79 |
+
print(e)
|
| 80 |
+
return model
|
| 81 |
+
|
| 82 |
+
def evaluate_video_quality(preprocess_data, data_loader, model_slowfast, model_swint, clip_model, clip_preprocess, blip_processor, blip_model, prompts, model_mlp, device):
|
| 83 |
+
# get video features
|
| 84 |
+
model_slowfast.eval()
|
| 85 |
+
model_swint.eval()
|
| 86 |
+
clip_model.eval()
|
| 87 |
+
blip_model.eval()
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
for i, (video_segments, video_res_frag_all, video_frag_all, video_name, frames_info, metadata) in enumerate(tqdm(data_loader, desc="Processing Videos")):
|
| 90 |
+
# slowfast features
|
| 91 |
+
_, _, slowfast_frame_feats = extract_features_slowfast_pool(video_segments, model_slowfast, device)
|
| 92 |
+
_, _, slowfast_res_frag_feats = extract_features_slowfast_pool(video_res_frag_all, model_slowfast, device)
|
| 93 |
+
_, _, slowfast_frame_frag_feats = extract_features_slowfast_pool(video_frag_all, model_slowfast, device)
|
| 94 |
+
slowfast_frame_feats_avg = slowfast_frame_feats.mean(dim=0)
|
| 95 |
+
slowfast_res_frag_feats_avg = slowfast_res_frag_feats.mean(dim=0)
|
| 96 |
+
slowfast_frame_frag_feats_avg = slowfast_frame_frag_feats.mean(dim=0)
|
| 97 |
+
|
| 98 |
+
# swinT feature
|
| 99 |
+
swint_frame_feats = extract_features_swint_pool(video_segments, model_swint, device)
|
| 100 |
+
swint_res_frag_feats = extract_features_swint_pool(video_res_frag_all, model_swint, device)
|
| 101 |
+
swint_frame_frag_feats = extract_features_swint_pool(video_frag_all, model_swint, device)
|
| 102 |
+
swint_frame_feats_avg = swint_frame_feats.mean(dim=0)
|
| 103 |
+
swint_res_frag_feats_avg = swint_res_frag_feats.mean(dim=0)
|
| 104 |
+
swint_frame_frag_feats_avg = swint_frame_frag_feats.mean(dim=0)
|
| 105 |
+
|
| 106 |
+
# semantic features
|
| 107 |
+
image_embedding, quality_embedding, artifact_embedding = extract_features_clip_embed(frames_info, metadata, clip_model, clip_preprocess, blip_processor, blip_model, prompts, device)
|
| 108 |
+
image_embedding_avg = image_embedding.mean(dim=0)
|
| 109 |
+
quality_embedding_avg = quality_embedding.mean(dim=0)
|
| 110 |
+
artifact_embedding_avg = artifact_embedding.mean(dim=0)
|
| 111 |
+
|
| 112 |
+
# frame + residual fragment + frame fragment features
|
| 113 |
+
slowfast_features = torch.cat((slowfast_frame_feats_avg, slowfast_res_frag_feats_avg, slowfast_frame_frag_feats_avg), dim=0)
|
| 114 |
+
swint_features = torch.cat((swint_frame_feats_avg, swint_res_frag_feats_avg, swint_frame_frag_feats_avg), dim=0)
|
| 115 |
+
clip_features = torch.cat((image_embedding_avg, quality_embedding_avg, artifact_embedding_avg), dim=0)
|
| 116 |
+
vqa_feats = torch.cat((slowfast_features, swint_features, clip_features), dim=0)
|
| 117 |
+
|
| 118 |
+
vqa_feats = vqa_feats
|
| 119 |
+
feature_tensor, _ = preprocess_data(vqa_feats, None)
|
| 120 |
+
feature_tensor = feature_tensor.unsqueeze(0) if feature_tensor.dim() == 1 else feature_tensor
|
| 121 |
+
|
| 122 |
+
model_mlp.eval()
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
with torch.amp.autocast(device_type=device.type if device.type == 'cuda' else 'cpu'):
|
| 125 |
+
prediction = model_mlp(feature_tensor)
|
| 126 |
+
predicted_score = prediction.item()
|
| 127 |
+
return predicted_score
|
| 128 |
+
|
| 129 |
+
def parse_framerate(framerate_str):
|
| 130 |
+
num, den = framerate_str.split('/')
|
| 131 |
+
framerate = float(num)/float(den)
|
| 132 |
+
return framerate
|
| 133 |
+
|
| 134 |
+
def get_video_metadata(video_path):
|
| 135 |
+
print(video_path)
|
| 136 |
+
ffprobe_path = 'ffprobe'
|
| 137 |
+
cmd = f'{ffprobe_path} -v error -select_streams v:0 -show_entries stream=width,height,nb_frames,r_frame_rate,bit_rate,bits_per_raw_sample,pix_fmt -of json {video_path}'
|
| 138 |
+
try:
|
| 139 |
+
result = subprocess.run(cmd, shell=True, capture_output=True, check=True)
|
| 140 |
+
info = json.loads(result.stdout)
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"Error processing file {video_path}: {e}")
|
| 143 |
+
return {}
|
| 144 |
+
|
| 145 |
+
width = info['streams'][0]['width']
|
| 146 |
+
height = info['streams'][0]['height']
|
| 147 |
+
bitrate = info['streams'][0].get('bit_rate', 0)
|
| 148 |
+
bitdepth = info['streams'][0].get('bits_per_raw_sample', 0)
|
| 149 |
+
framerate = info['streams'][0]['r_frame_rate']
|
| 150 |
+
framerate = parse_framerate(framerate)
|
| 151 |
+
return width, height, bitrate, bitdepth, framerate
|
| 152 |
+
|
| 153 |
+
def parse_arguments():
|
| 154 |
+
parser = argparse.ArgumentParser()
|
| 155 |
+
parser.add_argument('--device', type=str, default='gpu', help='cpu or gpu')
|
| 156 |
+
parser.add_argument('--model_name', type=str, default='Mlp')
|
| 157 |
+
parser.add_argument('--select_criteria', type=str, default='byrmse')
|
| 158 |
+
parser.add_argument('--intra_cross_experiment', type=str, default='intra', help='intra or cross')
|
| 159 |
+
parser.add_argument('--is_finetune', type=bool, default=True, help='True or False')
|
| 160 |
+
parser.add_argument('--save_model_path', type=str, default='./model/')
|
| 161 |
+
parser.add_argument('--prompt_path', type=str, default="./config/prompts.json")
|
| 162 |
+
|
| 163 |
+
parser.add_argument('--train_data_name', type=str, default='finevd', help='Name of the training data')
|
| 164 |
+
parser.add_argument('--test_data_name', type=str, default='finevd', help='Name of the testing data')
|
| 165 |
+
parser.add_argument('--test_video_path', type=str, default='./ugc_original_videos/0_16_07_500001604801190-yase.mp4', help='demo test video')
|
| 166 |
+
parser.add_argument('--prediction_mode', type=float, default=50, help='default for inference')
|
| 167 |
+
|
| 168 |
+
parser.add_argument('--network_name', type=str, default='camp-vqa')
|
| 169 |
+
parser.add_argument('--num_workers', type=int, default=4)
|
| 170 |
+
parser.add_argument('--resize', type=int, default=224)
|
| 171 |
+
parser.add_argument('--patch_size', type=int, default=16)
|
| 172 |
+
parser.add_argument('--target_size', type=int, default=224)
|
| 173 |
+
args = parser.parse_args()
|
| 174 |
+
return args
|
| 175 |
+
|
| 176 |
+
if __name__ == '__main__':
|
| 177 |
+
config = parse_arguments()
|
| 178 |
+
device = setup_device(config)
|
| 179 |
+
prompts = load_prompts(config.prompt_path)
|
| 180 |
+
|
| 181 |
+
# test demo video
|
| 182 |
+
resize_transform = get_transform(config.resize)
|
| 183 |
+
top_n = int(config.target_size /config. patch_size) * int(config.target_size / config.patch_size)
|
| 184 |
+
|
| 185 |
+
width, height, bitrate, bitdepth, framerate = get_video_metadata(config.test_video_path)
|
| 186 |
+
|
| 187 |
+
data = {'vid': [os.path.splitext(os.path.basename(config.test_video_path))[0]],
|
| 188 |
+
'test_data_name': [config.test_data_name],
|
| 189 |
+
'test_video_path': [config.test_video_path],
|
| 190 |
+
'prediction_mode': [config.prediction_mode],
|
| 191 |
+
'width': [width], 'height': [height], 'bitrate': [bitrate], 'bitdepth': [bitdepth], 'framerate': [framerate]}
|
| 192 |
+
videos_dir = os.path.dirname(config.test_video_path)
|
| 193 |
+
test_df = pd.DataFrame(data)
|
| 194 |
+
print(test_df.T)
|
| 195 |
+
print(f"Experiment Setting: {config.intra_cross_experiment}, {config.train_data_name} -> {config.test_data_name}")
|
| 196 |
+
if config.intra_cross_experiment == 'cross':
|
| 197 |
+
if config.train_data_name == 'lsvq_train':
|
| 198 |
+
print(f"Fine-tune: {config.is_finetune}")
|
| 199 |
+
|
| 200 |
+
dataset = VideoDataset_feature(test_df, videos_dir, config.test_data_name, resize_transform, config.resize, config.patch_size, config.target_size, top_n)
|
| 201 |
+
|
| 202 |
+
data_loader = torch.utils.data.DataLoader(
|
| 203 |
+
dataset, batch_size=1, shuffle=False, num_workers = min(config.num_workers, os.cpu_count() or 1), pin_memory = device.type == "cuda"
|
| 204 |
+
)
|
| 205 |
+
print(f"Model: {config.network_name} | Dataset: {config.test_data_name} | Device: {device}")
|
| 206 |
+
|
| 207 |
+
# load models to device
|
| 208 |
+
model_slowfast = SlowFast().to(device)
|
| 209 |
+
model_swint = SwinT(model_name='swin_large_patch4_window7_224', global_pool='avg', pretrained=True).to(device)
|
| 210 |
+
|
| 211 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
| 212 |
+
blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl", use_fast=True)
|
| 213 |
+
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl").to(device)
|
| 214 |
+
|
| 215 |
+
input_features = 13056
|
| 216 |
+
if config.intra_cross_experiment == 'intra':
|
| 217 |
+
if config.train_data_name == 'lsvq_train':
|
| 218 |
+
from model_regression_lsvq import Mlp, preprocess_data
|
| 219 |
+
else:
|
| 220 |
+
from model_regression import Mlp, preprocess_data
|
| 221 |
+
elif config.intra_cross_experiment == 'cross':
|
| 222 |
+
from model_regression_lsvq import Mlp, preprocess_data
|
| 223 |
+
model_mlp = load_model(config, device, Mlp, input_features)
|
| 224 |
+
|
| 225 |
+
quality_prediction = evaluate_video_quality(preprocess_data, data_loader, model_slowfast, model_swint, clip_model, clip_preprocess, blip_processor, blip_model, prompts, model_mlp, device)
|
| 226 |
print("Predicted Quality Score:", quality_prediction)
|
extractor/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (179 Bytes). View file
|
|
|
extractor/__pycache__/extract_frag.cpython-38.pyc
ADDED
|
Binary file (9.22 kB). View file
|
|
|
extractor/__pycache__/extract_slowfast_clip.cpython-38.pyc
ADDED
|
Binary file (2.26 kB). View file
|
|
|
extractor/__pycache__/extract_swint_clip.cpython-38.pyc
ADDED
|
Binary file (1.75 kB). View file
|
|
|
model_regression.py
CHANGED
|
@@ -110,7 +110,8 @@ def preprocess_data(X, y):
|
|
| 110 |
X_min = X.min(dim=0, keepdim=True).values
|
| 111 |
X_max = X.max(dim=0, keepdim=True).values
|
| 112 |
X = (X - X_min) / (X_max - X_min)
|
| 113 |
-
y
|
|
|
|
| 114 |
return X, y
|
| 115 |
|
| 116 |
# define 4-parameter logistic regression
|
|
|
|
| 110 |
X_min = X.min(dim=0, keepdim=True).values
|
| 111 |
X_max = X.max(dim=0, keepdim=True).values
|
| 112 |
X = (X - X_min) / (X_max - X_min)
|
| 113 |
+
if y is not None:
|
| 114 |
+
y = y.view(-1, 1).squeeze()
|
| 115 |
return X, y
|
| 116 |
|
| 117 |
# define 4-parameter logistic regression
|