xinyiW915 commited on
Commit
32bda62
·
verified ·
1 Parent(s): 01a7084

Upload 29 files

Browse files
Files changed (30) hide show
  1. .gitattributes +1 -0
  2. data_processing/.DS_Store +0 -0
  3. data_processing/__init__.py +2 -0
  4. data_processing/split_train_test.py +126 -0
  5. extractor/.DS_Store +0 -0
  6. extractor/__init__.py +2 -0
  7. extractor/extract_clip_embeds.py +166 -0
  8. extractor/extract_frag.py +327 -0
  9. extractor/extract_slowfast_clip.py +64 -0
  10. extractor/extract_swint_clip.py +40 -0
  11. model/.DS_Store +0 -0
  12. model/finetune/.DS_Store +0 -0
  13. model/finetune/cvd_2014_camp-vqa_fine_tuned_model.pth +3 -0
  14. model/finetune/finevd_camp-vqa_fine_tuned_model.pth +3 -0
  15. model/finetune/konvid_1k_camp-vqa_fine_tuned_model.pth +3 -0
  16. model/finetune/kvq_camp-vqa_fine_tuned_model.pth +3 -0
  17. model/finetune/live_vqc_camp-vqa_fine_tuned_model.pth +3 -0
  18. model/finetune/live_yt_gaming_camp-vqa_fine_tuned_model.pth +3 -0
  19. model/finetune/youtube_ugc_h264_camp-vqa_fine_tuned_model.pth +3 -0
  20. model/wo_finetune/.DS_Store +0 -0
  21. model/wo_finetune/cvd_2014_camp-vqa_Mlp_byrmse_trained_model.pth +3 -0
  22. model/wo_finetune/finevd_camp-vqa_Mlp_byrmse_trained_model.pth +3 -0
  23. model/wo_finetune/konvid_1k_camp-vqa_Mlp_byrmse_trained_model.pth +3 -0
  24. model/wo_finetune/kvq_camp-vqa_Mlp_byrmse_trained_model.pth +3 -0
  25. model/wo_finetune/live_vqc_camp-vqa_Mlp_byrmse_trained_mode.pth +3 -0
  26. model/wo_finetune/live_yt_gaming_camp-vqa_Mlp_byrmse_trained_model.pth +3 -0
  27. model/wo_finetune/lsvq_train_camp-vqa_Mlp_byrmse_trained_model_1080p.pth +3 -0
  28. model/wo_finetune/lsvq_train_camp-vqa_Mlp_byrmse_trained_model_kfold.pth +3 -0
  29. model/wo_finetune/youtube_ugc_h264_camp-vqa_Mlp_byrmse_trained_model.pth +3 -0
  30. ugc_original_videos/0_16_07_500001604801190-yase.mp4 +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ ugc_original_videos/0_16_07_500001604801190-yase.mp4 filter=lfs diff=lfs merge=lfs -text
data_processing/.DS_Store ADDED
Binary file (6.15 kB). View file
 
data_processing/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # __init__.py
2
+ # print("Data processing")
data_processing/split_train_test.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import os
4
+ import torch
5
+ from sklearn.model_selection import train_test_split
6
+ import logging
7
+
8
+ #NR: original
9
+ def process_lsvq(train_data_name, test_data_name, metadata_path, feature_path, network_name):
10
+ train_df = pd.read_csv(f'{metadata_path}/{train_data_name.upper()}_metadata.csv')
11
+ test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv')
12
+
13
+ # grayscale videos, do not consider them for fair comparison
14
+ # grey_df_train = pd.read_csv(f'{metadata_path}/greyscale_report/{train_data_name.upper()}_greyscale_metadata.csv')
15
+ # grey_df_test = pd.read_csv(f'{metadata_path}/greyscale_report/{test_data_name.upper()}_greyscale_metadata.csv')
16
+ # grey_indices_train = grey_df_train.iloc[:, 0].tolist()
17
+ # grey_indices_test = grey_df_test.iloc[:, 0].tolist()
18
+ # train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True)
19
+ # test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True)
20
+ test_vids = test_df['vid']
21
+
22
+ # mos scores
23
+ train_scores = train_df['mos'].tolist()
24
+ test_scores = test_df['mos'].tolist()
25
+ train_mos_list = train_scores
26
+ test_mos_list = test_scores
27
+
28
+ # reorder columns
29
+ sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']})
30
+ sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']})
31
+
32
+ # use indices from the train and test DataFrames to split features
33
+ train_features = torch.load(f'{feature_path}/{network_name}_{train_data_name}_features.pt')
34
+ print(f"loaded {train_data_name}: dimensions are {train_features.shape}")
35
+ test_features = torch.load(f'{feature_path}/{network_name}_{test_data_name}_features.pt')
36
+
37
+ # grayscale videos
38
+ # train_mask = torch.ones(train_features.size(0), dtype=torch.bool, device=train_features.device)
39
+ # test_mask = torch.ones(test_features.size(0), dtype=torch.bool, device=test_features.device)
40
+ # train_mask[grey_indices_train] = False
41
+ # test_mask[grey_indices_test] = False
42
+ # train_features = train_features[train_mask]
43
+ # test_features = test_features[test_mask]
44
+ print(len(train_features))
45
+ print(len(test_features))
46
+
47
+ # save the files
48
+ sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False)
49
+ sorted_test_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_test.csv', index=False)
50
+ os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True)
51
+ torch.save(train_features, f'{feature_path}/split_train_test/{network_name}_{train_data_name}_train_features.pt')
52
+ torch.save(test_features, f'{feature_path}/split_train_test/{network_name}_{test_data_name}_test_features.pt')
53
+
54
+ return train_features, test_features, test_vids
55
+
56
+ def process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name):
57
+ metadata_name = f'{data_name.upper()}_metadata.csv'
58
+ # for test finevd mos dimensions
59
+ # if data_name == 'finevd':
60
+ # metadata_name = f'{data_name.upper()}_MOS_temporal_metadata.csv'
61
+ # print(metadata_name)
62
+
63
+ # load CSV data
64
+ df = pd.read_csv(f'{metadata_path}/{metadata_name}')
65
+ # if data_name == 'youtube_ugc':
66
+ # # grayscale videos, do not consider them for fair comparison
67
+ # grey_df = pd.read_csv(f'{metadata_path}/greyscale_report/{data_name.upper()}_greyscale_metadata.csv')
68
+ # grey_indices = grey_df.iloc[:, 0].tolist()
69
+ # df = df.drop(index=grey_indices).reset_index(drop=True)
70
+
71
+ # get unique vids
72
+ unique_vids = df['vid'].unique()
73
+
74
+ # split videonames into train and test sets
75
+ train_vids, test_vids = train_test_split(unique_vids, test_size=test_size, random_state=random_state)
76
+
77
+ # split all_dfs into train and test based on vids
78
+ train_df = df[df['vid'].isin(train_vids)]
79
+ test_df = df[df['vid'].isin(test_vids)]
80
+
81
+ # mos scores
82
+ train_scores = train_df['mos'].tolist()
83
+ test_scores = test_df['mos'].tolist()
84
+ train_mos_list = train_scores
85
+ test_mos_list = test_scores
86
+
87
+ # reorder columns
88
+ sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']})
89
+ sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']})
90
+
91
+ # use indices from the train and test DataFrames to split features
92
+ features = torch.load(f'{feature_path}/{network_name}_{data_name}_features.pt')
93
+ # if data_name == 'youtube_ugc':
94
+ # # features = np.delete(features, grey_indices, axis=0)
95
+ # mask = torch.ones(features.size(0), dtype=torch.bool, device=features.device)
96
+ # mask[grey_indices] = False
97
+ # features = features[mask]
98
+ train_features = features[train_df.index]
99
+ test_features = features[test_df.index]
100
+
101
+ # save the files
102
+ sorted_train_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_train.csv', index=False)
103
+ sorted_test_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_test.csv', index=False)
104
+ os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True)
105
+ torch.save(train_features, f'{feature_path}/split_train_test/{network_name}_{data_name}_train_features.pt')
106
+ torch.save(test_features, f'{feature_path}/split_train_test/{network_name}_{data_name}_test_features.pt')
107
+
108
+ return train_features, test_features, test_vids
109
+
110
+
111
+ if __name__ == '__main__':
112
+ network_name = "slowfast"
113
+ data_name = "test"
114
+ metadata_path = '../../metadata/'
115
+ feature_path = '../../features/konvid_1k_test/slowfast/'
116
+
117
+ # train test split
118
+ test_size = 0.2
119
+ random_state = None
120
+
121
+ if data_name == 'lsvq_train':
122
+ test_data_name = 'lsvq_test'
123
+ process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name)
124
+
125
+ else:
126
+ process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name)
extractor/.DS_Store ADDED
Binary file (6.15 kB). View file
 
extractor/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # __init__.py
2
+ # print("Initializing extractor")
extractor/extract_clip_embeds.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import clip
4
+ import numpy as np
5
+ from numpy.linalg import norm
6
+ from PIL import Image
7
+
8
+ def get_quality_hint_from_metadata(mos, width, height, bitrate, bitdepth, framerate, quality_hints):
9
+ hint = []
10
+ if mos > 5:
11
+ mos = (mos / 100) * 5
12
+ if mos >= 4.5:
13
+ hint.append(quality_hints["mos"]["excellent"])
14
+ elif 3.5 <= mos < 4.5:
15
+ hint.append(quality_hints["mos"]["good"])
16
+ elif 2.5 <= mos < 3.5:
17
+ hint.append(quality_hints["mos"]["fair"])
18
+ elif 1.5 <= mos < 2.5:
19
+ hint.append(quality_hints["mos"]["bad"])
20
+ else:
21
+ hint.append(quality_hints["mos"]["poor"])
22
+
23
+ res = width * height
24
+ if res < 640 * 480:
25
+ hint.append(quality_hints["resolution"]["low"])
26
+ elif res < 1280 * 720:
27
+ hint.append(quality_hints["resolution"]["sd"])
28
+ else:
29
+ hint.append(quality_hints["resolution"]["hd"])
30
+ if bitrate < 500_000:
31
+ hint.append(quality_hints["bitrate"]["low"])
32
+ elif bitrate < 1_000_000:
33
+ hint.append(quality_hints["bitrate"]["medium"])
34
+ else:
35
+ hint.append(quality_hints["bitrate"]["high"])
36
+
37
+ if 0 < bitdepth <= 8:
38
+ hint.append(quality_hints["bitdepth"]["low"])
39
+ elif bitdepth == 0:
40
+ hint.append(quality_hints["bitdepth"]["standard"])
41
+ else:
42
+ hint.append(quality_hints["bitdepth"]["high"])
43
+ if framerate < 24:
44
+ hint.append(quality_hints["framerate"]["low"])
45
+ elif framerate > 60:
46
+ hint.append(quality_hints["framerate"]["high"])
47
+ else:
48
+ hint.append(quality_hints["framerate"]["standard"])
49
+ return " ".join(hint)
50
+
51
+ def generate_caption(blip_processor, blip_model, device, image, prompt):
52
+ inputs = blip_processor(image, prompt, return_tensors="pt").to(device)
53
+ generated_ids = blip_model.generate(**inputs, max_new_tokens=50)
54
+ caption = blip_processor.decode(generated_ids[0], skip_special_tokens=True)
55
+ return caption
56
+
57
+ def tensor_to_pil(image_tensor):
58
+ if isinstance(image_tensor, torch.Tensor):
59
+ arr = image_tensor.cpu().numpy()
60
+ if arr.ndim == 4 and arr.shape[0] == 1:
61
+ arr = arr[0] # remove batch dimension
62
+ arr = arr.astype('uint8')
63
+ return Image.fromarray(arr)
64
+
65
+ def extract_semantic_captions(blip_processor, blip_model, curr_frame, frag_residual, frag_frame, prompts, device, metadata=None, use_metadata_prompt=False):
66
+ quality_prompt_base = prompts["quality_prompt_base"]
67
+ residual_prompt = prompts["residual_prompt"]
68
+ frag_prompt = prompts["frag_prompt"]
69
+
70
+ quality_hint = ""
71
+ if use_metadata_prompt and metadata:
72
+ mos, width, height, bitrate, bitdepth, framerate = metadata
73
+ quality_hint = get_quality_hint_from_metadata(mos, width, height, bitrate, bitdepth, framerate, quality_hints=prompts["quality_hints"])
74
+
75
+ prompt_hints = []
76
+ if quality_hint:
77
+ prompt_hints.append(quality_hint)
78
+
79
+ quality_prompt = "\n\n".join(prompt_hints + [quality_prompt_base])
80
+ fragment_prompt = "\n\n".join(prompt_hints)
81
+ # print('content_prompt:', content_prompt)
82
+ # print('quality_prompt:', quality_prompt)
83
+ # print('residual_prompt:', fragment_prompt + "\n\n" + residual_prompt)
84
+ # print('frame_fragment_prompt:', fragment_prompt + "\n\n" + frag_prompt)
85
+
86
+ captions = {
87
+ "curr_frame_quality": generate_caption(blip_processor, blip_model, device, curr_frame, prompt=quality_prompt),
88
+ "frag_residual": generate_caption(blip_processor, blip_model, device, frag_residual, prompt=(fragment_prompt + "\n\n" + residual_prompt)),
89
+ "frag_frame": generate_caption(blip_processor, blip_model, device, frag_frame, prompt=(fragment_prompt + "\n\n" + frag_prompt))
90
+ }
91
+ return captions
92
+
93
+ def clean_caption_text(text):
94
+ text = re.sub(r"- .*?stock videos & royalty-free footage", "", text)
95
+ text = re.sub(r"\s+", " ", text)
96
+ return text.strip()
97
+
98
+ def dedup_keywords(text, split_tokens=[",", ".", ";"]):
99
+ for token in split_tokens:
100
+ text = text.replace(token, ",")
101
+ parts = [p.strip().lower() for p in text.split(",") if p.strip()]
102
+ seen = set()
103
+ unique_parts = []
104
+ for part in parts:
105
+ if part not in seen:
106
+ unique_parts.append(part)
107
+ seen.add(part)
108
+ return " ".join(unique_parts) # good for embedding
109
+
110
+ def get_clip_text_embedding(clip_model, device, text):
111
+ text_tokens = clip.tokenize([text]).to(device)
112
+ with torch.no_grad():
113
+ with torch.amp.autocast(device_type='cuda'):
114
+ text_features = clip_model.encode_text(text_tokens)
115
+ text_features = text_features / text_features.norm(dim=-1, keepdim=True)
116
+ return text_features.squeeze()
117
+
118
+ def get_clip_image_embedding(clip_model, clip_preprocess, device, image):
119
+ image_input = clip_preprocess(image).unsqueeze(0).to(device)
120
+ with torch.no_grad():
121
+ with torch.amp.autocast(device_type='cuda'):
122
+ image_features = clip_model.encode_image(image_input)
123
+ image_features = image_features / image_features.norm(dim=-1, keepdim=True)
124
+ return image_features.squeeze()
125
+
126
+ def extract_semantic_embeddings(clip_model, clip_preprocess, device, curr_frame, captions):
127
+ if not isinstance(curr_frame, Image.Image):
128
+ curr_frame = Image.fromarray(curr_frame)
129
+
130
+ quality_caption = dedup_keywords(clean_caption_text(captions["curr_frame_quality"]))
131
+ artifact_caption_1 = dedup_keywords(clean_caption_text(captions["frag_residual"]))
132
+ artifact_caption_2 = dedup_keywords(clean_caption_text(captions["frag_frame"]))
133
+ artifact_caption = dedup_keywords(f"{artifact_caption_1}, {artifact_caption_2}")
134
+
135
+ image_embed = get_clip_image_embedding(clip_model, clip_preprocess, device, curr_frame)
136
+ quality_embed = get_clip_text_embedding(clip_model, device, quality_caption)
137
+ artifact_embed = get_clip_text_embedding(clip_model, device, artifact_caption)
138
+ return image_embed, quality_embed, artifact_embed
139
+
140
+ def extract_features_clip_embed(frames_info, metadata, clip_model, clip_preprocess, blip_processor, blip_model, prompts, device):
141
+ feature_image_embed = []
142
+ feature_quality_embed = []
143
+ feature_artifact_embed = []
144
+ for i, (curr_frame, frag_residual, frag_frame) in enumerate(frames_info):
145
+ curr_frame = tensor_to_pil(curr_frame)
146
+ frag_residual = tensor_to_pil(frag_residual)
147
+ frag_frame = tensor_to_pil(frag_frame)
148
+
149
+ captions = extract_semantic_captions(
150
+ blip_processor, blip_model,
151
+ curr_frame, frag_residual, frag_frame, prompts,
152
+ device,
153
+ metadata=metadata,
154
+ use_metadata_prompt=True,
155
+ )
156
+ image_embed, quality_embed, artifact_embed = extract_semantic_embeddings(clip_model, clip_preprocess, device, curr_frame, captions)
157
+ feature_image_embed.append(image_embed)
158
+ feature_quality_embed.append(quality_embed)
159
+ feature_artifact_embed.append(artifact_embed)
160
+
161
+ # concatenate features
162
+ image_embedding = torch.stack(feature_image_embed, dim=0)
163
+ quality_embedding = torch.stack(feature_quality_embed, dim=0)
164
+ artifact_embedding = torch.stack(feature_artifact_embed, dim=0)
165
+ # print("image_embedding.shape:", image_embedding.shape, "quality_embedding.shape:", quality_embedding.shape, "artifact_embedding.shape:", artifact_embedding.shape)
166
+ return image_embedding, quality_embedding, artifact_embedding
extractor/extract_frag.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import pandas as pd
4
+ import time
5
+ import torch
6
+ import matplotlib.pyplot as plt
7
+ import numpy as np
8
+ from torchvision import transforms
9
+ from torch.utils.data import DataLoader
10
+ from PIL import Image
11
+ from torch.utils import data
12
+
13
+
14
+ class VideoDataset_feature(data.Dataset):
15
+ def __init__(self, filename_path, data_dir, database, transform, resize, patch_size=16, target_size=224, top_n=196):
16
+ super(VideoDataset_feature, self).__init__()
17
+ if isinstance(filename_path, str):
18
+ self.dataInfo = pd.read_csv(filename_path)
19
+ elif isinstance(filename_path, pd.DataFrame):
20
+ self.dataInfo = filename_path
21
+ else:
22
+ raise ValueError("filename_path: CSV file or DataFrame")
23
+ self.video_names = self.dataInfo['vid'].tolist()
24
+ self.videos_dir = data_dir
25
+ self.database = database
26
+ self.transform = transform
27
+ self.resize = resize
28
+ self.patch_size = patch_size
29
+ self.target_size = target_size
30
+ self.top_n = top_n
31
+ self.length = len(self.video_names)
32
+
33
+ def __len__(self):
34
+ return self.length
35
+
36
+ def __getitem__(self, idx):
37
+ if self.database in ['konvid_1k', 'test']:
38
+ video_clip_min = 8
39
+ video_name = str(self.video_names[idx]) + '.mp4'
40
+ elif self.database == 'live_vqc':
41
+ video_clip_min = 10
42
+ video_name = str(self.video_names[idx]) + '.mp4'
43
+ elif self.database == 'cvd_2014':
44
+ video_clip_min = 12
45
+ video_name = str(self.video_names[idx]) + '.avi'
46
+ elif self.database == 'youtube_ugc':
47
+ video_clip_min = 20
48
+ video_name = str(self.video_names[idx]) + '.mkv'
49
+ elif self.database == 'youtube_ugc_h264':
50
+ video_clip_min = 20
51
+ video_name = str(self.video_names[idx]) + '.mp4'
52
+ elif self.database == 'live_yt_gaming':
53
+ video_clip_min = 7
54
+ video_name = str(self.video_names[idx]) + '.mp4'
55
+ elif self.database == 'kvq':
56
+ video_clip_min = 8
57
+ video_name = str(self.video_names[idx]) + '.mp4'
58
+ elif self.database in ['finevd', 'finevd_test']:
59
+ video_clip_min = 8
60
+ video_name = str(self.video_names[idx]) + '.mp4'
61
+ elif self.database in ['lsvq_test_1080p', 'lsvq_test', 'lsvq_train']:
62
+ video_clip_min = 8
63
+ video_name = str(self.video_names[idx]) + '.mp4'
64
+
65
+ # get metadata
66
+ row = self.dataInfo.iloc[idx]
67
+ if 'prediction_mode' in row and pd.notnull(row['prediction_mode']):
68
+ mos = float(row['prediction_mode'])
69
+ else:
70
+ mos = float(row['mos'])
71
+ metadata = (
72
+ mos,
73
+ int(row["width"]),
74
+ int(row["height"]),
75
+ int(row["bitrate"]),
76
+ int(row["bitdepth"]),
77
+ float(row["framerate"])
78
+ )
79
+ filename = os.path.join(self.videos_dir, video_name)
80
+
81
+ video_capture = cv2.VideoCapture(filename)
82
+ video_capture.set(cv2.CAP_PROP_BUFFERSIZE, 3)
83
+ if not video_capture.isOpened():
84
+ raise RuntimeError(f"Failed to open video: {filename}")
85
+
86
+ video_length = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
87
+ video_frame_rate = int(round(video_capture.get(cv2.CAP_PROP_FPS)))
88
+ fps = video_capture.get(cv2.CAP_PROP_FPS)
89
+ if fps is None or fps <= 1:
90
+ print(f"Invalid FPS={fps} for video {filename}. Using default")
91
+ fps = 2.0
92
+ frame_step = int(fps // 2)
93
+ video_clip = int(video_length / video_frame_rate) if video_frame_rate != 0 else 10
94
+ video_channel = 3
95
+ video_length_clip = 32
96
+
97
+ all_frame_tensor = torch.zeros((video_length, video_channel, self.resize, self.resize), dtype=torch.float32)
98
+ all_residual_frag_tensor = torch.zeros((video_length - 1, video_channel, self.resize, self.resize), dtype=torch.float32)
99
+ all_frame_frag_tensor = torch.zeros((video_length - 1, video_channel, self.resize, self.resize), dtype=torch.float32)
100
+
101
+ video_read_index = 0
102
+ frames_info = []
103
+ prev_frame = None
104
+ for i in range(video_length):
105
+ has_frames, frame = video_capture.read()
106
+ if has_frames:
107
+ curr_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
108
+ # frame features
109
+ curr_frame_tensor = self.transform(Image.fromarray(curr_frame))
110
+ all_frame_tensor[video_read_index] = curr_frame_tensor
111
+
112
+ # frame frag features
113
+ if prev_frame is not None:
114
+ residual = cv2.absdiff(curr_frame, prev_frame)
115
+ diff = self.get_patch_diff(residual)
116
+ # frame residual fragment
117
+ imp_patches, positions = self.extract_important_patches(residual, diff)
118
+ imp_patches_pil = Image.fromarray(imp_patches.astype('uint8'))
119
+ residual_frag_tensor = self.transform(imp_patches_pil)
120
+ all_residual_frag_tensor[video_read_index] = residual_frag_tensor
121
+
122
+ # current frame fragment
123
+ ori_patches = self.get_original_frame_patches(curr_frame, positions)
124
+ ori_patches_pil = Image.fromarray(ori_patches.astype('uint8'))
125
+ frame_frag_tensor = self.transform(ori_patches_pil)
126
+ all_frame_frag_tensor[video_read_index] = frame_frag_tensor
127
+
128
+ # as a tuple
129
+ if i % frame_step == 0:
130
+ frames_info.append((curr_frame, imp_patches, ori_patches))
131
+ video_read_index += 1
132
+ prev_frame = curr_frame
133
+ video_capture.release()
134
+
135
+ # Unfilled frames
136
+ self.fill_tensor(all_frame_tensor, video_read_index, video_length)
137
+ self.fill_tensor(all_residual_frag_tensor, video_read_index, video_length - 1)
138
+ self.fill_tensor(all_frame_frag_tensor, video_read_index, video_length - 1)
139
+
140
+ video_all = []
141
+ video_res_frag_all = []
142
+ video_frag_all = []
143
+ for i in range(video_clip):
144
+ clip_tensor = torch.zeros([video_length_clip, video_channel, self.resize, self.resize])
145
+ clip_res_frag_tensor = torch.zeros([video_length_clip, video_channel, self.resize, self.resize])
146
+ clip_frag_tensor = torch.zeros([video_length_clip, video_channel, self.resize, self.resize])
147
+
148
+ start_idx = i * video_frame_rate
149
+ end_idx = start_idx + video_length_clip
150
+ # frame features
151
+ if end_idx <= video_length:
152
+ clip_tensor = all_frame_tensor[start_idx:end_idx]
153
+ else:
154
+ clip_tensor[:(video_length - start_idx)] = all_frame_tensor[start_idx:]
155
+ clip_tensor[(video_length - start_idx):video_length_clip] = clip_tensor[video_length - start_idx - 1]
156
+
157
+ # frame frag features
158
+ if end_idx <= (video_length - 1):
159
+ clip_res_frag_tensor = all_residual_frag_tensor[start_idx:end_idx]
160
+ clip_frag_tensor = all_frame_frag_tensor[start_idx:end_idx]
161
+ else:
162
+ clip_res_frag_tensor[:(video_length - 1 - start_idx)] = all_residual_frag_tensor[start_idx:]
163
+ clip_frag_tensor[:(video_length - 1 - start_idx)] = all_frame_frag_tensor[start_idx:]
164
+ clip_res_frag_tensor[(video_length - 1 - start_idx):video_length_clip] = clip_res_frag_tensor[video_length - 1 - start_idx - 1]
165
+ clip_frag_tensor[(video_length - 1 - start_idx):video_length_clip] = clip_frag_tensor[video_length - 1 - start_idx - 1]
166
+
167
+ video_all.append(clip_tensor)
168
+ video_res_frag_all.append(clip_res_frag_tensor)
169
+ video_frag_all.append(clip_frag_tensor)
170
+
171
+ # Underfilling of clips
172
+ if video_clip < video_clip_min:
173
+ for i in range(video_clip, video_clip_min):
174
+ video_all.append(video_all[video_clip - 1])
175
+ video_res_frag_all.append(video_res_frag_all[video_clip - 1])
176
+ video_frag_all.append(video_frag_all[video_clip - 1])
177
+ return video_all, video_res_frag_all, video_frag_all, video_name, frames_info, metadata
178
+
179
+ @staticmethod
180
+ # duplicat the final frames
181
+ def fill_tensor(tensor, read_index, length):
182
+ if read_index < length:
183
+ tensor[read_index:length] = tensor[read_index - 1]
184
+
185
+ def get_patch_diff(self, residual_frame):
186
+ h, w = residual_frame.shape[:2]
187
+ patch_size = self.patch_size
188
+ h_adj = (h // patch_size) * patch_size
189
+ w_adj = (w // patch_size) * patch_size
190
+ residual_frame_adj = residual_frame[:h_adj, :w_adj]
191
+ # calculate absolute patch difference
192
+ diff = np.zeros((h_adj // patch_size, w_adj // patch_size))
193
+ for i in range(0, h_adj, patch_size):
194
+ for j in range(0, w_adj, patch_size):
195
+ patch = residual_frame_adj[i:i+patch_size, j:j+patch_size]
196
+ # absolute sum
197
+ diff[i // patch_size, j // patch_size] = np.sum(np.abs(patch))
198
+ return diff
199
+
200
+ def extract_important_patches(self, residual_frame, diff):
201
+ patch_size = self.patch_size
202
+ target_size = self.target_size
203
+ top_n = self.top_n
204
+
205
+ # find top n patches indices
206
+ patch_idx = np.unravel_index(np.argsort(-diff.ravel()), diff.shape)
207
+ top_patches = list(zip(patch_idx[0][:top_n], patch_idx[1][:top_n]))
208
+ sorted_idx = sorted(top_patches, key=lambda x: (x[0], x[1]))
209
+
210
+ imp_patches_img = np.zeros((target_size, target_size, residual_frame.shape[2]), dtype=residual_frame.dtype)
211
+ patches_per_row = target_size // patch_size # 14
212
+ # order the patch in the original location relation
213
+ positions = []
214
+ for idx, (y, x) in enumerate(sorted_idx):
215
+ patch = residual_frame[y * patch_size:(y + 1) * patch_size, x * patch_size:(x + 1) * patch_size]
216
+ # new patch location
217
+ row_idx = idx // patches_per_row
218
+ col_idx = idx % patches_per_row
219
+ start_y = row_idx * patch_size
220
+ start_x = col_idx * patch_size
221
+ imp_patches_img[start_y:start_y + patch_size, start_x:start_x + patch_size] = patch
222
+ positions.append((y, x))
223
+ return imp_patches_img, positions
224
+
225
+ def get_original_frame_patches(self, original_frame, positions):
226
+ patch_size = self.patch_size
227
+ target_size = self.target_size
228
+ imp_original_patches_img = np.zeros((target_size, target_size, original_frame.shape[2]), dtype=original_frame.dtype)
229
+ patches_per_row = target_size // patch_size
230
+
231
+ for idx, (y, x) in enumerate(positions):
232
+ start_y = y * patch_size
233
+ start_x = x * patch_size
234
+ end_y = start_y + patch_size
235
+ end_x = start_x + patch_size
236
+
237
+ patch = original_frame[start_y:end_y, start_x:end_x]
238
+ row_idx = idx // patches_per_row
239
+ col_idx = idx % patches_per_row
240
+ target_start_y = row_idx * patch_size
241
+ target_start_x = col_idx * patch_size
242
+
243
+ imp_original_patches_img[target_start_y:target_start_y + patch_size,
244
+ target_start_x:target_start_x + patch_size] = patch
245
+ return imp_original_patches_img
246
+
247
+ def visualise_tensor(tensors, num_frames_to_visualise=5, img_title='Frag'):
248
+ np_feat = tensors.numpy()
249
+ fig, axes = plt.subplots(1, num_frames_to_visualise, figsize=(15, 5))
250
+ for i in range(num_frames_to_visualise):
251
+ # move channels to last dimension for visualisation: (height, width, channels)
252
+ frame = np_feat[i].transpose(1, 2, 0)
253
+ # normalize to [0, 1] for visualisation
254
+ frame = (frame - frame.min()) / (frame.max() - frame.min())
255
+ axes[i].imshow(frame)
256
+ axes[i].axis('off')
257
+ axes[i].set_title(f'{img_title} {i + 1}')
258
+
259
+ plt.tight_layout()
260
+ plt.show()
261
+
262
+ def visualise_image(frame, img_title='Residual Fragment', debug=True):
263
+ if debug:
264
+ plt.figure(figsize=(5, 5))
265
+ plt.imshow(frame)
266
+ plt.axis('off')
267
+ plt.title(img_title)
268
+ plt.show()
269
+
270
+ if __name__ == "__main__":
271
+ database = 'test'
272
+ videos_dir = '../../test_videos/'
273
+ metadata_csv = '../../metadata/TEST_metadata.csv'
274
+ resize = 224
275
+ patch_size = 16
276
+ target_size = 224
277
+ top_n = 14 * 14
278
+ start_time = time.time()
279
+ resize_transform = transforms.Compose([
280
+ transforms.Resize([resize, resize]),
281
+ transforms.ToTensor(),
282
+ transforms.Normalize(mean=[0.45, 0.45, 0.45], std=[0.225, 0.225, 0.225])
283
+ ])
284
+
285
+ dataset = VideoDataset_feature(
286
+ filename_path=metadata_csv,
287
+ data_dir=videos_dir,
288
+ database=database,
289
+ transform=resize_transform,
290
+ resize=resize,
291
+ patch_size=patch_size,
292
+ target_size=target_size,
293
+ top_n=top_n
294
+ )
295
+
296
+ # test
297
+ dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
298
+
299
+ start_time = time.time()
300
+ index = 0
301
+ video_segments, video_res_frag_all, video_frag_all, video_name, frames_info, metadata = dataset[index]
302
+
303
+ print(f"\n=== Video Processed ===")
304
+ print(f"Video Name: {video_name}")
305
+ print(f"Metadata: [MOS, width, height, bitrate, bitdepth, framerate] = {metadata}")
306
+ print(f"Number of Segments: {len(video_segments)}")
307
+ print(f"Number of Video Residual Fragment Segments: {len(video_res_frag_all)}")
308
+ print(f"Number of Video Fragment Segments: {len(video_frag_all)}")
309
+ print(f"Shape of Each Segment: {video_segments[0].shape}") # (video_length_clip, channels, height, width)
310
+ print(f"Shape of Each Residual Fragment Segments: {video_res_frag_all[0].shape}")
311
+ print(f"Shape of Each Fragment Segments: {video_frag_all[0].shape}")
312
+ print(f"Total Key Frame Tuples (frames_info): {len(frames_info)}")
313
+ curr_frame, imp_patch, ori_patch = frames_info[0]
314
+ print("curr_frame shape:", np.array(curr_frame).shape)
315
+ print("imp_patch shape:", np.array(imp_patch).shape)
316
+ print("ori_patch shape:", np.array(ori_patch).shape)
317
+
318
+ # visualisation
319
+ curr_frame, frag_residual, frag_frame = frames_info[0]
320
+ visualise_image(curr_frame, 'Current Frame')
321
+ visualise_image(frag_residual, 'Residual Fragment')
322
+ visualise_image(frag_frame, 'Frame Fragment')
323
+
324
+ visualise_tensor(video_segments[0], num_frames_to_visualise=5, img_title='Frame')
325
+ visualise_tensor(video_res_frag_all[0], num_frames_to_visualise=5, img_title='Residual Frag')
326
+ visualise_tensor(video_frag_all[0], num_frames_to_visualise=5, img_title='Frame Frag')
327
+ print(f"\nTotal Time: {time.time() - start_time:.2f} seconds")
extractor/extract_slowfast_clip.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from pytorchvideo.models.hub import slowfast_r50
4
+
5
+ def pack_pathway_output(frames, device):
6
+ fast_pathway = frames
7
+ # temporal sampling from the fast pathway.
8
+ slow_pathway = torch.index_select(
9
+ frames,
10
+ 2,
11
+ torch.linspace(0, frames.shape[2] - 1, frames.shape[2] // 4).long(),
12
+ )
13
+ return [slow_pathway.to(device), fast_pathway.to(device)]
14
+
15
+
16
+ class SlowFast(torch.nn.Module):
17
+ def __init__(self):
18
+ super(SlowFast, self).__init__()
19
+ slowfast_pretrained_features = nn.Sequential(*list(slowfast_r50(pretrained=True).children())[0])
20
+
21
+ self.feature_extraction = torch.nn.Sequential()
22
+ self.slow_avg_pool = torch.nn.Sequential()
23
+ self.fast_avg_pool = torch.nn.Sequential()
24
+ self.adp_avg_pool = torch.nn.Sequential()
25
+
26
+ for x in range(0, 5):
27
+ self.feature_extraction.add_module(str(x), slowfast_pretrained_features[x])
28
+
29
+ self.slow_avg_pool.add_module('slow_avg_pool', slowfast_pretrained_features[5].pool[0])
30
+ self.fast_avg_pool.add_module('fast_avg_pool', slowfast_pretrained_features[5].pool[1])
31
+ self.adp_avg_pool.add_module('adp_avg_pool', slowfast_pretrained_features[6].output_pool)
32
+
33
+ def forward(self, x):
34
+ with torch.no_grad():
35
+ x = self.feature_extraction(x)
36
+ slow_feature = self.slow_avg_pool(x[0])
37
+ fast_feature = self.fast_avg_pool(x[1])
38
+ slow_feature = self.adp_avg_pool(slow_feature)
39
+ fast_feature = self.adp_avg_pool(fast_feature)
40
+ return slow_feature, fast_feature
41
+
42
+ def extract_features_slowfast_pool(video, model, device):
43
+ slow_features_list = []
44
+ fast_features_list = []
45
+
46
+ with torch.amp.autocast(device_type='cuda'):
47
+ for idx, segment in enumerate(video):
48
+ segment = segment.permute(0, 2, 1, 3, 4)
49
+ inputs = pack_pathway_output(segment, device)
50
+ # print(f"Inputs shapes: slow={inputs[0].shape}, fast={inputs[1].shape}")
51
+
52
+ # extract features
53
+ slow_feature, fast_feature = model(inputs)
54
+ # global average pooling to reduce dimensions
55
+ slow_feature = slow_feature.mean(dim=[2, 3, 4]) # Pool over spatial and temporal dims
56
+ fast_feature = fast_feature.mean(dim=[2, 3, 4])
57
+ slow_features_list.append(slow_feature)
58
+ fast_features_list.append(fast_feature)
59
+
60
+ # concatenate pooled features
61
+ slow_features = torch.cat(slow_features_list, dim=0)
62
+ fast_features = torch.cat(fast_features_list, dim=0)
63
+ slowfast_features = torch.cat((slow_features, fast_features), dim=1) # along feature dimension
64
+ return slow_features, fast_features, slowfast_features
extractor/extract_swint_clip.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from timm import create_model
4
+
5
+ class Identity(nn.Module):
6
+ def __init__(self):
7
+ super(Identity, self).__init__()
8
+
9
+ def forward(self, x):
10
+ return x
11
+
12
+ class SwinT(nn.Module):
13
+ def __init__(self, model_name='swin_base_patch4_window7_224', global_pool='avg', pretrained=True):
14
+ super(SwinT, self).__init__()
15
+ self.swin_model = create_model(
16
+ model_name, pretrained=pretrained, global_pool=global_pool
17
+ )
18
+ self.swin_model.head = Identity() # Remove classification head
19
+ self.global_pool = global_pool
20
+
21
+ def forward(self, x):
22
+ features = self.swin_model(x) # Shape: (batch_size, 7, 7, 1024)
23
+ if self.global_pool == 'avg':
24
+ features = features.mean(dim=[1, 2]) # Global pool
25
+ return features
26
+
27
+ def extract_features_swint_pool(video, model, device):
28
+ swint_feature_list = []
29
+
30
+ with torch.amp.autocast(device_type='cuda'):
31
+ for segment in video:
32
+ # Flatten the segment into a batch of frames
33
+ frames = segment.squeeze(0).to(device) # Shape: (32, 3, 224, 224)
34
+
35
+ swint_features = model(frames) # Shape: (32, feature_dim)
36
+ swint_feature_list.append(swint_features)
37
+
38
+ # Concatenate features across segments
39
+ features = torch.cat(swint_feature_list, dim=0) # Shape: (num_frames, feature_dim)
40
+ return features
model/.DS_Store ADDED
Binary file (10.2 kB). View file
 
model/finetune/.DS_Store ADDED
Binary file (8.2 kB). View file
 
model/finetune/cvd_2014_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:577a57259bcb14d536cb9be01e735a9659a418523a5f6882e1d6f0aa34a1a879
3
+ size 13511298
model/finetune/finevd_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96f2baf34f0aeb853cdaf498a38b0bfaa4d05085ee7ad0bbe083050ed7613b9c
3
+ size 13511148
model/finetune/konvid_1k_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c96602e5c2aeb644487af17215f3dd79c48f56f06c7a41a130a48cb70f7de4ee
3
+ size 13511794
model/finetune/kvq_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76b2e72b802565a29892f2570555575ee00982253591f914e78528118a32a7a7
3
+ size 13511103
model/finetune/live_vqc_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0962ea94657840d3afe4b7099ae532635c7cf1e21dab3c9df476d090fc892cb1
3
+ size 13511298
model/finetune/live_yt_gaming_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9030af7485bbda2661c8c208c288f0b50cead0bc1bf600934eb02dd2e1893796
3
+ size 13511874
model/finetune/youtube_ugc_h264_camp-vqa_fine_tuned_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a19c4fb90d6b44929f0dcfb276d5daf44b12f73b08a8b861cd8fa93fcdd6924
3
+ size 13511418
model/wo_finetune/.DS_Store ADDED
Binary file (8.2 kB). View file
 
model/wo_finetune/cvd_2014_camp-vqa_Mlp_byrmse_trained_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e30fbbbc821527e4204d84b1145f9ace84061779208a313180abd2cb8b377368
3
+ size 13506412
model/wo_finetune/finevd_camp-vqa_Mlp_byrmse_trained_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c47579161d9bf8037d12baebcfc2d4ca49d0037d3dc77612d199606d1f43fe48
3
+ size 13506031
model/wo_finetune/konvid_1k_camp-vqa_Mlp_byrmse_trained_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d73eb32a787b243a7b5aacbc8bf16ea91179f6aa89dc6980081ff422a2c05a9
3
+ size 13506487
model/wo_finetune/kvq_camp-vqa_Mlp_byrmse_trained_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ca9718e13e7446df65bfdfb519c63004eb5df85c19260fa37e7f05f068bdd52
3
+ size 13505998
model/wo_finetune/live_vqc_camp-vqa_Mlp_byrmse_trained_mode.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:464a2fa7f837658c01f113b503f37699cf2e9e809e258f09a0dc08808e5baf88
3
+ size 13506412
model/wo_finetune/live_yt_gaming_camp-vqa_Mlp_byrmse_trained_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af0893a05ebc27512eede807f8c663f962b1fe6578aeb9d597abeefab58e304b
3
+ size 13506271
model/wo_finetune/lsvq_train_camp-vqa_Mlp_byrmse_trained_model_1080p.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3beef20985f987dc89b33524f55d136ab23e2aab6eb936d29c3d2cc7a3d14ae
3
+ size 13512098
model/wo_finetune/lsvq_train_camp-vqa_Mlp_byrmse_trained_model_kfold.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bec5863ae799a9f496d597d576b7e37dcdbea5df9e1c05a80d5da66591972fc7
3
+ size 13512754
model/wo_finetune/youtube_ugc_h264_camp-vqa_Mlp_byrmse_trained_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8efe4d8b5817453da1dd6664914e5d0b5a307b7f5746b17939d7059622efcbdd
3
+ size 13506692
ugc_original_videos/0_16_07_500001604801190-yase.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41b1f2a7cf48cda0a3adc956a98c864115dc83b692fcfb26d46814cb9fd9e9bc
3
+ size 3883352