CAMP-VQA / model_finetune.py
xinyiW915's picture
Update model_finetune.py
91e4416 verified
import argparse
import pandas as pd
import numpy as np
import math
import os
import scipy.io
import scipy.stats
from scipy.optimize import curve_fit
from sklearn.model_selection import train_test_split
import seaborn as sns
import matplotlib.pyplot as plt
import copy
from joblib import dump, load
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.utils.data import DataLoader, TensorDataset
from model_regression_lsvq import Mlp, MAEAndRankLoss, preprocess_data, compute_correlation_metrics, logistic_func, plot_results
def create_results_dataframe(data_list, network_name, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list):
df_results = pd.DataFrame(columns=['DATASET', 'MODEL', 'SRCC', 'KRCC', 'PLCC', 'RMSE', 'SELECT_CRITERIC'])
df_results['DATASET'] = data_list
df_results['MODEL'] = network_name
df_results['SRCC'] = srcc_list
df_results['KRCC'] = krcc_list
df_results['PLCC'] = plcc_list
df_results['RMSE'] = rmse_list
df_results['SELECT_CRITERIC'] = select_criteria_list
return df_results
def process_test_set(test_data_name, metadata_path, feature_path, network_name):
test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv')
test_vids = test_df['vid']
mos = torch.tensor(test_df['mos'].astype(float), dtype=torch.float32)
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'):
test_scores = ((mos - 1) * (99 / 4) + 1.0)
else:
test_scores = mos
sorted_test_df = pd.DataFrame({
'vid': test_df['vid'],
'framerate': test_df['framerate'],
'MOS': test_scores,
'MOS_raw': mos
})
test_features = torch.load(f'{feature_path}/{network_name}_{test_data_name}_features.pt')
print(f'num of {test_data_name} features: {len(test_features)}')
return test_features, test_vids, test_scores, sorted_test_df
def fix_state_dict(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
name = k[7:]
elif k == 'n_averaged':
continue
else:
name = k
new_state_dict[name] = v
return new_state_dict
def collate_to_device(batch, device):
data, targets = zip(*batch)
return torch.stack(data).to(device), torch.stack(targets).to(device)
def model_test(best_model, X, y, device):
test_dataset = TensorDataset(X, y)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
best_model.eval()
y_pred = []
with torch.no_grad():
for inputs, _ in test_loader:
inputs = inputs.to(device)
outputs = best_model(inputs)
y_pred.extend(outputs.view(-1).tolist())
return y_pred
def fine_tune_model(model, device, model_path, X_fine_tune, y_fine_tune, save_path, batch_size, epochs, loss_type, optimizer_type, initial_lr, weight_decay, use_swa, l1_w, rank_w):
state_dict = torch.load(model_path)
fixed_state_dict = fix_state_dict(state_dict)
try:
model.load_state_dict(fixed_state_dict)
except RuntimeError as e:
print(e)
for param in model.parameters():
param.requires_grad = True
model.train().to(device) # to gpu
fine_tune_dataset = TensorDataset(X_fine_tune, y_fine_tune)
fine_tune_loader = DataLoader(dataset=fine_tune_dataset, batch_size=batch_size, shuffle=False)
# initialisation of loss function, optimiser
if loss_type == 'MAERankLoss':
criterion = MAEAndRankLoss()
criterion.l1_w = l1_w
criterion.rank_w = rank_w
else:
criterion = nn.MSELoss()
if optimizer_type == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9, weight_decay=weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-5)# initial eta_min=1e-5
else:
optimizer = optim.AdamW(model.parameters(), lr=initial_lr, weight_decay=weight_decay) # L2 Regularisation initial: 0.01, 1e-5
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.95) # step_size=10, gamma=0.1: every 10 epochs lr*0.1
if use_swa:
swa_model = AveragedModel(model).to(device)
swa_scheduler = SWALR(optimizer, swa_lr=initial_lr, anneal_strategy='cos')
swa_start = int(epochs * 0.75) if use_swa else epochs # SWA starts after 75% of total epochs, only set SWA start if SWA is used
best_loss = float('inf')
for epoch in range(epochs):
model.train()
epoch_loss = 0.0
for inputs, labels in fine_tune_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels.view(-1, 1))
loss.backward()
optimizer.step()
epoch_loss += loss.item() * inputs.size(0)
scheduler.step()
if use_swa and epoch >= swa_start:
swa_model.update_parameters(model)
swa_scheduler.step()
print(f"Current learning rate with SWA: {swa_scheduler.get_last_lr()}")
avg_loss = epoch_loss / len(fine_tune_loader.dataset)
if (epoch + 1) % 5 == 0:
print(f"Epoch {epoch+1}, Loss: {avg_loss:.4f}")
# decide which model to evaluate: SWA model or regular model
current_model = swa_model if use_swa and epoch >= swa_start else model
# Save best model state
if avg_loss < best_loss:
best_loss = avg_loss
best_model = copy.deepcopy(current_model)
# decide which model to evaluate: SWA model or regular model
if use_swa and epoch >= swa_start:
train_loader = DataLoader(dataset=fine_tune_dataset, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_to_device(x, device))
best_model = best_model.to(device)
best_model.eval()
torch.optim.swa_utils.update_bn(train_loader, best_model)
# model_path_new = os.path.join(save_path, f"{test_data_name}_diva-vqa_fine_tuned_model.pth")
# torch.save(best_model.state_dict(), model_path_new) # save finetuned model
return best_model
def fine_tuned_model_test(model, device, X_test, y_test, test_data_name):
model.eval()
y_test_pred = model_test(model, X_test, y_test, device)
y_test_pred = torch.tensor(list(y_test_pred), dtype=torch.float32)
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'):
y_test_convert = ((y_test - 1) / (99 / 4) + 1.0)
y_test_pred_convert = ((y_test_pred - 1) / (99 / 4) + 1.0)
else:
y_test_convert = y_test
y_test_pred_convert = y_test_pred
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test_convert.cpu().numpy(), y_test_pred_convert.cpu().numpy())
test_pred_score = {'MOS': y_test_convert, 'y_test_pred': y_test_pred_convert, 'y_test_pred_logistic': y_test_pred_logistic}
df_test_pred = pd.DataFrame(test_pred_score)
return df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test
def wo_fine_tune_model(model, device, model_path, X_test, y_test, loss_type, test_data_name):
state_dict = torch.load(model_path)
fixed_state_dict = fix_state_dict(state_dict)
try:
model.load_state_dict(fixed_state_dict)
except RuntimeError as e:
print(e)
model.eval().to(device) # to gpu
if loss_type == 'MAERankLoss':
criterion = MAEAndRankLoss()
else:
criterion = torch.nn.MSELoss()
# evaluate the model
test_dataset = TensorDataset(X_test, y_test)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
test_loss = 0.0
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels.view(-1, 1))
test_loss += loss.item() * inputs.size(0)
average_loss = test_loss / len(test_loader.dataset)
print(f"Test Loss: {average_loss}")
y_test_pred = model_test(model, X_test, y_test, device)
y_test_pred = torch.tensor(list(y_test_pred), dtype=torch.float32)
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'):
y_test_convert = ((y_test - 1) / (99 / 4) + 1.0)
y_test_pred_convert = ((y_test_pred - 1) / (99 / 4) + 1.0)
else:
y_test_convert = y_test
y_test_pred_convert = y_test_pred
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test_convert.cpu().numpy(), y_test_pred_convert.cpu().numpy())
test_pred_score = {'MOS': y_test_convert, 'y_test_pred': y_test_pred_convert, 'y_test_pred_logistic': y_test_pred_logistic}
df_test_pred = pd.DataFrame(test_pred_score)
return df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test
def run(args):
data_list, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list = [], [], [], [], [], []
os.makedirs(os.path.join(args.report_path, 'fine_tune'), exist_ok=True)
if args.is_finetune:
csv_name = f'{args.report_path}/fine_tune/{args.test_data_name}_{args.network_name}_{args.select_criteria}_finetune.csv'
else:
csv_name = f'{args.report_path}/fine_tune/{args.test_data_name}_{args.network_name}_{args.select_criteria}_wo_finetune.csv'
print(f'Test dataset: {args.test_data_name}')
test_features, test_vids, test_scores, sorted_test_df = process_test_set(args.test_data_name, args.metadata_path, args.feature_path, args.network_name)
X_test, y_test = preprocess_data(test_features, test_scores)
# get save model param
model = Mlp(input_features=X_test.shape[1], out_features=1, drop_rate=0.2, act_layer=nn.GELU)
model = model.to(device)
model_path = os.path.join(args.model_path, f"{args.train_data_name}_{args.network_name}_{args.model_name}_{args.select_criteria}_trained_model_kfold.pth")
model_results = []
for i in range(1, args.n_repeats + 1):
print(f"{i}th repeated 80-20 hold out test")
X_fine_tune, X_final_test, y_fine_tune, y_final_test = train_test_split(X_test, y_test, test_size=0.2, random_state=math.ceil(8.8 * i))
if args.is_finetune:
# test fine tuned model on the test dataset
ft_model = fine_tune_model(model, device, model_path, X_fine_tune, y_fine_tune, args.report_path, args.batch_size,
args.epochs, args.loss_type, args.optimizer_type, args.initial_lr, args.weight_decay, args.use_swa, args.l1_w, args.rank_w)
df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = fine_tuned_model_test(ft_model, device, X_final_test, y_final_test, args.test_data_name)
best_model = copy.deepcopy(ft_model)
else:
# without fine tune on the test dataset
df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = wo_fine_tune_model(model, device, model_path, X_test, y_test, args.loss_type, args.test_data_name)
print(y_test_pred_logistic)
best_model = copy.deepcopy(model)
model_results.append({
'model': best_model,
'srcc': srcc_test,
'krcc': krcc_test,
'plcc': plcc_test,
'rmse': rmse_test,
'df_pred': df_test_pred
})
print('\n')
if args.select_criteria == 'byrmse':
sorted_results = sorted(model_results, key=lambda x: x['rmse'])
elif args.select_criteria == 'bykrcc':
sorted_results = sorted(model_results, key=lambda x: x['krcc'], reverse=True)
else:
raise ValueError(f"Unknown select_criteria: {args.select_criteria}")
median_index = len(sorted_results) // 2
median_result = sorted_results[median_index]
median_model = median_result['model']
median_df_test_pred = median_result['df_pred']
median_srcc_test = median_result['srcc']
median_krcc_test = median_result['krcc']
median_plcc_test = median_result['plcc']
median_rmse_test = median_result['rmse']
data_list.append(args.test_data_name)
srcc_list.append(median_srcc_test)
krcc_list.append(median_krcc_test)
plcc_list.append(median_plcc_test)
rmse_list.append(median_rmse_test)
select_criteria_list.append(args.select_criteria)
median_df_test_pred.head()
# save finetuned model
if args.is_finetune:
model_path_new = os.path.join(args.report_path, f"{args.test_data_name}_{args.network_name}_fine_tuned_model.pth")
torch.save(median_model.state_dict(), model_path_new)
print(f"Median model select {args.select_criteria} saved to {model_path_new}")
df_results = create_results_dataframe(data_list, args.network_name, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list)
print(df_results.T)
df_results.to_csv(csv_name, index=None, encoding="UTF-8")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--train_data_name', type=str, default='lsvq_train')
parser.add_argument('--test_data_name', type=str, default='finevd')
parser.add_argument('--network_name', type=str, default='camp-vqa')
parser.add_argument('--model_name', type=str, default='Mlp')
parser.add_argument('--select_criteria', type=str, default='byrmse', choices=['byrmse', 'bykrcc'])
# paths
parser.add_argument('--metadata_path', type=str, default='../metadata/')
parser.add_argument('--feature_path', type=str, default=None)
parser.add_argument('--model_path', type=str, default='../model/')
parser.add_argument('--report_path', type=str, default='../log/')
# training parameters
parser.add_argument('--is_finetune', action='store_true', help="Enable fine-tuning")
parser.add_argument('--n_repeats', type=int, default=21)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--epochs', type=int, default=200)
# misc
parser.add_argument('--loss_type', type=str, default='MAERankLoss')
parser.add_argument('--optimizer_type', type=str, default='sgd')
parser.add_argument('--initial_lr', type=float, default=1e-2)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--use_swa', type=bool, default=True, help="Enable SWA (default: True)")
parser.add_argument('--l1_w', type=float, default=0.6)
parser.add_argument('--rank_w', type=float, default=1.0)
args = parser.parse_args()
if args.feature_path is None:
args.feature_path = f'../features/{args.network_name}/'
print(f"[Paths] metadata: {args.metadata_path}; features: {args.feature_path}; model: {args.model_path}; report: {args.report_path}")
run(args)