Spaces:
Sleeping
Sleeping
File size: 15,134 Bytes
7509a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import argparse
import pandas as pd
import numpy as np
import math
import os
import scipy.io
import scipy.stats
from scipy.optimize import curve_fit
from sklearn.model_selection import train_test_split
import seaborn as sns
import matplotlib.pyplot as plt
import copy
from joblib import dump, load
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.utils.data import DataLoader, TensorDataset
from model_regression_lsvq import Mlp, MAEAndRankLoss, preprocess_data, compute_correlation_metrics, logistic_func, plot_results
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type == "cuda":
torch.cuda.set_device(0)
def create_results_dataframe(data_list, network_name, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list):
df_results = pd.DataFrame(columns=['DATASET', 'MODEL', 'SRCC', 'KRCC', 'PLCC', 'RMSE', 'SELECT_CRITERIC'])
df_results['DATASET'] = data_list
df_results['MODEL'] = network_name
df_results['SRCC'] = srcc_list
df_results['KRCC'] = krcc_list
df_results['PLCC'] = plcc_list
df_results['RMSE'] = rmse_list
df_results['SELECT_CRITERIC'] = select_criteria_list
return df_results
def process_test_set(test_data_name, metadata_path, feature_path, network_name):
test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv')
test_vids = test_df['vid']
mos = torch.tensor(test_df['mos'].astype(float), dtype=torch.float32)
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'):
test_scores = ((mos - 1) * (99 / 4) + 1.0)
else:
test_scores = mos
sorted_test_df = pd.DataFrame({
'vid': test_df['vid'],
'framerate': test_df['framerate'],
'MOS': test_scores,
'MOS_raw': mos
})
test_features = torch.load(f'{feature_path}/{network_name}_{test_data_name}_features.pt')
print(f'num of {test_data_name} features: {len(test_features)}')
return test_features, test_vids, test_scores, sorted_test_df
def fix_state_dict(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
name = k[7:]
elif k == 'n_averaged':
continue
else:
name = k
new_state_dict[name] = v
return new_state_dict
def collate_to_device(batch, device):
data, targets = zip(*batch)
return torch.stack(data).to(device), torch.stack(targets).to(device)
def model_test(best_model, X, y, device):
test_dataset = TensorDataset(X, y)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
best_model.eval()
y_pred = []
with torch.no_grad():
for inputs, _ in test_loader:
inputs = inputs.to(device)
outputs = best_model(inputs)
y_pred.extend(outputs.view(-1).tolist())
return y_pred
def fine_tune_model(model, device, model_path, X_fine_tune, y_fine_tune, save_path, batch_size, epochs, loss_type, optimizer_type, initial_lr, weight_decay, use_swa, l1_w, rank_w):
state_dict = torch.load(model_path)
fixed_state_dict = fix_state_dict(state_dict)
try:
model.load_state_dict(fixed_state_dict)
except RuntimeError as e:
print(e)
for param in model.parameters():
param.requires_grad = True
model.train().to(device) # to gpu
fine_tune_dataset = TensorDataset(X_fine_tune, y_fine_tune)
fine_tune_loader = DataLoader(dataset=fine_tune_dataset, batch_size=batch_size, shuffle=False)
# initialisation of loss function, optimiser
if loss_type == 'MAERankLoss':
criterion = MAEAndRankLoss()
criterion.l1_w = l1_w
criterion.rank_w = rank_w
else:
criterion = nn.MSELoss()
if optimizer_type == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9, weight_decay=weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-5)# initial eta_min=1e-5
else:
optimizer = optim.AdamW(model.parameters(), lr=initial_lr, weight_decay=weight_decay) # L2 Regularisation initial: 0.01, 1e-5
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.95) # step_size=10, gamma=0.1: every 10 epochs lr*0.1
if use_swa:
swa_model = AveragedModel(model).to(device)
swa_scheduler = SWALR(optimizer, swa_lr=initial_lr, anneal_strategy='cos')
swa_start = int(epochs * 0.75) if use_swa else epochs # SWA starts after 75% of total epochs, only set SWA start if SWA is used
best_loss = float('inf')
for epoch in range(epochs):
model.train()
epoch_loss = 0.0
for inputs, labels in fine_tune_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels.view(-1, 1))
loss.backward()
optimizer.step()
epoch_loss += loss.item() * inputs.size(0)
scheduler.step()
if use_swa and epoch >= swa_start:
swa_model.update_parameters(model)
swa_scheduler.step()
print(f"Current learning rate with SWA: {swa_scheduler.get_last_lr()}")
avg_loss = epoch_loss / len(fine_tune_loader.dataset)
if (epoch + 1) % 5 == 0:
print(f"Epoch {epoch+1}, Loss: {avg_loss:.4f}")
# decide which model to evaluate: SWA model or regular model
current_model = swa_model if use_swa and epoch >= swa_start else model
# Save best model state
if avg_loss < best_loss:
best_loss = avg_loss
best_model = copy.deepcopy(current_model)
# decide which model to evaluate: SWA model or regular model
if use_swa and epoch >= swa_start:
train_loader = DataLoader(dataset=fine_tune_dataset, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_to_device(x, device))
best_model = best_model.to(device)
best_model.eval()
torch.optim.swa_utils.update_bn(train_loader, best_model)
# model_path_new = os.path.join(save_path, f"{test_data_name}_diva-vqa_fine_tuned_model.pth")
# torch.save(best_model.state_dict(), model_path_new) # save finetuned model
return best_model
def fine_tuned_model_test(model, device, X_test, y_test, test_data_name):
model.eval()
y_test_pred = model_test(model, X_test, y_test, device)
y_test_pred = torch.tensor(list(y_test_pred), dtype=torch.float32)
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'):
y_test_convert = ((y_test - 1) / (99 / 4) + 1.0)
y_test_pred_convert = ((y_test_pred - 1) / (99 / 4) + 1.0)
else:
y_test_convert = y_test
y_test_pred_convert = y_test_pred
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test_convert.cpu().numpy(), y_test_pred_convert.cpu().numpy())
test_pred_score = {'MOS': y_test_convert, 'y_test_pred': y_test_pred_convert, 'y_test_pred_logistic': y_test_pred_logistic}
df_test_pred = pd.DataFrame(test_pred_score)
return df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test
def wo_fine_tune_model(model, device, model_path, X_test, y_test, loss_type, test_data_name):
state_dict = torch.load(model_path)
fixed_state_dict = fix_state_dict(state_dict)
try:
model.load_state_dict(fixed_state_dict)
except RuntimeError as e:
print(e)
model.eval().to(device) # to gpu
if loss_type == 'MAERankLoss':
criterion = MAEAndRankLoss()
else:
criterion = torch.nn.MSELoss()
# evaluate the model
test_dataset = TensorDataset(X_test, y_test)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
test_loss = 0.0
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels.view(-1, 1))
test_loss += loss.item() * inputs.size(0)
average_loss = test_loss / len(test_loader.dataset)
print(f"Test Loss: {average_loss}")
y_test_pred = model_test(model, X_test, y_test, device)
y_test_pred = torch.tensor(list(y_test_pred), dtype=torch.float32)
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'):
y_test_convert = ((y_test - 1) / (99 / 4) + 1.0)
y_test_pred_convert = ((y_test_pred - 1) / (99 / 4) + 1.0)
else:
y_test_convert = y_test
y_test_pred_convert = y_test_pred
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test_convert.cpu().numpy(), y_test_pred_convert.cpu().numpy())
test_pred_score = {'MOS': y_test_convert, 'y_test_pred': y_test_pred_convert, 'y_test_pred_logistic': y_test_pred_logistic}
df_test_pred = pd.DataFrame(test_pred_score)
return df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test
def run(args):
data_list, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list = [], [], [], [], [], []
os.makedirs(os.path.join(args.report_path, 'fine_tune'), exist_ok=True)
if args.is_finetune:
csv_name = f'{args.report_path}/fine_tune/{args.test_data_name}_{args.network_name}_{args.select_criteria}_finetune.csv'
else:
csv_name = f'{args.report_path}/fine_tune/{args.test_data_name}_{args.network_name}_{args.select_criteria}_wo_finetune.csv'
print(f'Test dataset: {args.test_data_name}')
test_features, test_vids, test_scores, sorted_test_df = process_test_set(args.test_data_name, args.metadata_path, args.feature_path, args.network_name)
X_test, y_test = preprocess_data(test_features, test_scores)
# get save model param
model = Mlp(input_features=X_test.shape[1], out_features=1, drop_rate=0.2, act_layer=nn.GELU)
model = model.to(device)
model_path = os.path.join(args.model_path, f"{args.train_data_name}_{args.network_name}_{args.model_name}_{args.select_criteria}_trained_model_kfold.pth")
model_results = []
for i in range(1, args.n_repeats + 1):
print(f"{i}th repeated 80-20 hold out test")
X_fine_tune, X_final_test, y_fine_tune, y_final_test = train_test_split(X_test, y_test, test_size=0.2, random_state=math.ceil(8.8 * i))
if args.is_finetune:
# test fine tuned model on the test dataset
ft_model = fine_tune_model(model, device, model_path, X_fine_tune, y_fine_tune, args.report_path, args.batch_size,
args.epochs, args.loss_type, args.optimizer_type, args.initial_lr, args.weight_decay, args.use_swa, args.l1_w, args.rank_w)
df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = fine_tuned_model_test(ft_model, device, X_final_test, y_final_test, args.test_data_name)
best_model = copy.deepcopy(ft_model)
else:
# without fine tune on the test dataset
df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = wo_fine_tune_model(model, device, model_path, X_test, y_test, args.loss_type, args.test_data_name)
print(y_test_pred_logistic)
best_model = copy.deepcopy(model)
model_results.append({
'model': best_model,
'srcc': srcc_test,
'krcc': krcc_test,
'plcc': plcc_test,
'rmse': rmse_test,
'df_pred': df_test_pred
})
print('\n')
if args.select_criteria == 'byrmse':
sorted_results = sorted(model_results, key=lambda x: x['rmse'])
elif args.select_criteria == 'bykrcc':
sorted_results = sorted(model_results, key=lambda x: x['krcc'], reverse=True)
else:
raise ValueError(f"Unknown select_criteria: {args.select_criteria}")
median_index = len(sorted_results) // 2
median_result = sorted_results[median_index]
median_model = median_result['model']
median_df_test_pred = median_result['df_pred']
median_srcc_test = median_result['srcc']
median_krcc_test = median_result['krcc']
median_plcc_test = median_result['plcc']
median_rmse_test = median_result['rmse']
data_list.append(args.test_data_name)
srcc_list.append(median_srcc_test)
krcc_list.append(median_krcc_test)
plcc_list.append(median_plcc_test)
rmse_list.append(median_rmse_test)
select_criteria_list.append(args.select_criteria)
median_df_test_pred.head()
# save finetuned model
if args.is_finetune:
model_path_new = os.path.join(args.report_path, f"{args.test_data_name}_{args.network_name}_fine_tuned_model.pth")
torch.save(median_model.state_dict(), model_path_new)
print(f"Median model select {args.select_criteria} saved to {model_path_new}")
df_results = create_results_dataframe(data_list, args.network_name, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list)
print(df_results.T)
df_results.to_csv(csv_name, index=None, encoding="UTF-8")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--train_data_name', type=str, default='lsvq_train')
parser.add_argument('--test_data_name', type=str, default='finevd')
parser.add_argument('--network_name', type=str, default='camp-vqa')
parser.add_argument('--model_name', type=str, default='Mlp')
parser.add_argument('--select_criteria', type=str, default='byrmse', choices=['byrmse', 'bykrcc'])
# paths
parser.add_argument('--metadata_path', type=str, default='../metadata/')
parser.add_argument('--feature_path', type=str, default=None)
parser.add_argument('--model_path', type=str, default='../model/')
parser.add_argument('--report_path', type=str, default='../log/')
# training parameters
parser.add_argument('--is_finetune', action='store_true', help="Enable fine-tuning")
parser.add_argument('--n_repeats', type=int, default=21)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--epochs', type=int, default=200)
# misc
parser.add_argument('--loss_type', type=str, default='MAERankLoss')
parser.add_argument('--optimizer_type', type=str, default='sgd')
parser.add_argument('--initial_lr', type=float, default=1e-2)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--use_swa', type=bool, default=True, help="Enable SWA (default: True)")
parser.add_argument('--l1_w', type=float, default=0.6)
parser.add_argument('--rank_w', type=float, default=1.0)
args = parser.parse_args()
if args.feature_path is None:
args.feature_path = f'../features/{args.network_name}/'
print(f"[Paths] metadata: {args.metadata_path}; features: {args.feature_path}; model: {args.model_path}; report: {args.report_path}")
run(args) |