Spaces:
Runtime error
Runtime error
| import re | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
| extractor = AutoFeatureExtractor.from_pretrained("DunnBC22/dit-base-Business_Documents_Classified_v2") | |
| model = AutoModelForImageClassification.from_pretrained("DunnBC22/dit-base-Business_Documents_Classified_v2") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| def classify_documents(image): | |
| # input_image = image.convert("RGB") | |
| inputs = extractor(images=image, return_tensor='pt') | |
| tensors = torch.from_numpy(inputs.pixel_values[0]).unsqueeze(0) | |
| model_output = model(tensors).logits | |
| max_index = torch.argmax(model_output) | |
| document_class = model.config.id2label[max_index.item()] | |
| return { | |
| "result" : str(document_class) | |
| } | |
| article = "<p style='text-align: center'><a href='https://www.xelpmoc.in/' target='_blank'>Made by Xelpmoc</a></p>" | |
| demo = gr.Interface( | |
| fn=classify_documents, | |
| inputs="image", | |
| outputs="json", | |
| title="Document Classification", | |
| article=article, | |
| enable_queue=True, | |
| examples=[ | |
| ["./test_images/email_image_2.jpg"], | |
| ["./test_images/form_image_3.jpg"] | |
| ], | |
| cache_examples=False) | |
| demo.launch() |