Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,44 @@
|
|
| 1 |
-
|
| 2 |
import cv2
|
|
|
|
| 3 |
from PIL import Image, ImageDraw
|
|
|
|
| 4 |
import torch
|
| 5 |
-
import streamlit as st
|
| 6 |
|
| 7 |
-
# Load
|
| 8 |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 9 |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 10 |
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
| 11 |
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
| 12 |
|
| 13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def detect_license_plate(frame):
|
| 15 |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 16 |
inputs = detr_processor(images=pil_image, return_tensors="pt")
|
| 17 |
outputs = detr_model(**inputs)
|
| 18 |
|
|
|
|
| 19 |
target_sizes = torch.tensor([pil_image.size[::-1]])
|
| 20 |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
| 21 |
-
|
| 22 |
return results[0]["boxes"], pil_image
|
| 23 |
|
| 24 |
-
|
|
|
|
| 25 |
def recognize_text_from_plate(cropped_plate):
|
| 26 |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
| 27 |
outputs = trocr_model.generate(**inputs)
|
| 28 |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 29 |
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# Streamlit configuration
|
| 34 |
-
st.title("Real-Time Car Number Plate Recognition")
|
| 35 |
-
st.text("This application uses Hugging Face Transformers to detect and recognize car plates.")
|
| 36 |
-
|
| 37 |
-
# Authorized car database
|
| 38 |
-
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"}
|
| 39 |
-
|
| 40 |
-
# Verification function
|
| 41 |
def verify_plate(plate_text):
|
| 42 |
if plate_text in authorized_cars:
|
| 43 |
return f"✅ Access Granted: {plate_text}"
|
|
@@ -45,46 +46,45 @@ def verify_plate(plate_text):
|
|
| 45 |
return f"❌ Access Denied: {plate_text}"
|
| 46 |
|
| 47 |
|
| 48 |
-
#
|
| 49 |
def live_feed():
|
| 50 |
-
cap = cv2.VideoCapture(0) # Open
|
| 51 |
-
stframe = st.empty() #
|
| 52 |
|
| 53 |
while cap.isOpened():
|
| 54 |
ret, frame = cap.read()
|
| 55 |
if not ret:
|
| 56 |
break
|
| 57 |
|
| 58 |
-
# Detect
|
| 59 |
boxes, pil_image = detect_license_plate(frame)
|
| 60 |
draw = ImageDraw.Draw(pil_image)
|
| 61 |
|
| 62 |
recognized_plates = []
|
| 63 |
for box in boxes:
|
| 64 |
-
# Crop
|
| 65 |
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
|
| 66 |
-
|
| 67 |
-
# Recognize text
|
| 68 |
plate_text = recognize_text_from_plate(cropped_plate)
|
| 69 |
recognized_plates.append(plate_text)
|
| 70 |
|
| 71 |
-
# Draw
|
| 72 |
-
draw.rectangle(box.tolist(), outline="red", width=
|
| 73 |
draw.text((box[0], box[1]), plate_text, fill="red")
|
| 74 |
|
| 75 |
-
# Convert
|
| 76 |
processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 77 |
|
| 78 |
-
# Stream
|
| 79 |
-
stframe.image(processed_frame, channels="BGR")
|
| 80 |
|
| 81 |
-
#
|
| 82 |
for plate_text in recognized_plates:
|
| 83 |
st.write(verify_plate(plate_text))
|
| 84 |
|
| 85 |
cap.release()
|
| 86 |
cv2.destroyAllWindows()
|
| 87 |
|
| 88 |
-
if st.button("Start Camera"):
|
| 89 |
-
live_feed()
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
from PIL import Image, ImageDraw
|
| 5 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel
|
| 6 |
import torch
|
|
|
|
| 7 |
|
| 8 |
+
# Load Models
|
| 9 |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 10 |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 11 |
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
| 12 |
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
| 13 |
|
| 14 |
+
# Streamlit App Configuration
|
| 15 |
+
st.title("Real-Time Car Number Plate Recognition")
|
| 16 |
+
st.write("This app uses Hugging Face Transformers, OpenCV, and Streamlit for detecting and recognizing car number plates in real-time.")
|
| 17 |
+
|
| 18 |
+
# Authorized Car Database
|
| 19 |
+
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} # Dummy data for verification
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Detect License Plates
|
| 23 |
def detect_license_plate(frame):
|
| 24 |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 25 |
inputs = detr_processor(images=pil_image, return_tensors="pt")
|
| 26 |
outputs = detr_model(**inputs)
|
| 27 |
|
| 28 |
+
# Post-process outputs to get bounding boxes
|
| 29 |
target_sizes = torch.tensor([pil_image.size[::-1]])
|
| 30 |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
|
|
|
| 31 |
return results[0]["boxes"], pil_image
|
| 32 |
|
| 33 |
+
|
| 34 |
+
# Recognize Text from Plates
|
| 35 |
def recognize_text_from_plate(cropped_plate):
|
| 36 |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
| 37 |
outputs = trocr_model.generate(**inputs)
|
| 38 |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 39 |
|
| 40 |
|
| 41 |
+
# Verify Plate Text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def verify_plate(plate_text):
|
| 43 |
if plate_text in authorized_cars:
|
| 44 |
return f"✅ Access Granted: {plate_text}"
|
|
|
|
| 46 |
return f"❌ Access Denied: {plate_text}"
|
| 47 |
|
| 48 |
|
| 49 |
+
# Real-Time Video Processing with OpenCV
|
| 50 |
def live_feed():
|
| 51 |
+
cap = cv2.VideoCapture(0) # Open webcam
|
| 52 |
+
stframe = st.empty() # Placeholder for video stream
|
| 53 |
|
| 54 |
while cap.isOpened():
|
| 55 |
ret, frame = cap.read()
|
| 56 |
if not ret:
|
| 57 |
break
|
| 58 |
|
| 59 |
+
# Detect plates
|
| 60 |
boxes, pil_image = detect_license_plate(frame)
|
| 61 |
draw = ImageDraw.Draw(pil_image)
|
| 62 |
|
| 63 |
recognized_plates = []
|
| 64 |
for box in boxes:
|
| 65 |
+
# Crop and recognize plate
|
| 66 |
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
|
|
|
|
|
|
|
| 67 |
plate_text = recognize_text_from_plate(cropped_plate)
|
| 68 |
recognized_plates.append(plate_text)
|
| 69 |
|
| 70 |
+
# Draw box and label
|
| 71 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
| 72 |
draw.text((box[0], box[1]), plate_text, fill="red")
|
| 73 |
|
| 74 |
+
# Convert back to OpenCV format
|
| 75 |
processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 76 |
|
| 77 |
+
# Stream video to Streamlit
|
| 78 |
+
stframe.image(processed_frame, channels="BGR", use_column_width=True)
|
| 79 |
|
| 80 |
+
# Display results
|
| 81 |
for plate_text in recognized_plates:
|
| 82 |
st.write(verify_plate(plate_text))
|
| 83 |
|
| 84 |
cap.release()
|
| 85 |
cv2.destroyAllWindows()
|
| 86 |
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
# Streamlit UI
|
| 89 |
+
if st.button("Start Camera"):
|
| 90 |
+
live_feed()
|