Spaces:
Sleeping
Sleeping
first commit
Browse files- .gitignore +5 -0
- app.py +151 -0
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ipynb_checkpoints
|
| 2 |
+
.vscode
|
| 3 |
+
.venv
|
| 4 |
+
poetry.lock
|
| 5 |
+
pyproject.toml
|
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from nltk import sent_tokenize
|
| 5 |
+
from transformers import RobertaTokenizer, RobertaForMaskedLM
|
| 6 |
+
|
| 7 |
+
cuda = torch.cuda.is_available()
|
| 8 |
+
|
| 9 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-large")
|
| 10 |
+
model = RobertaForMaskedLM.from_pretrained("roberta-large")
|
| 11 |
+
if cuda:
|
| 12 |
+
model = model.cuda()
|
| 13 |
+
|
| 14 |
+
max_len = 20
|
| 15 |
+
top_k = 100
|
| 16 |
+
temperature = 1
|
| 17 |
+
burnin = 250
|
| 18 |
+
max_iter = 500
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# adapted from https://github.com/nyu-dl/bert-gen
|
| 22 |
+
def generate_step(out,
|
| 23 |
+
gen_idx,
|
| 24 |
+
temperature=None,
|
| 25 |
+
top_k=0,
|
| 26 |
+
sample=False,
|
| 27 |
+
return_list=True):
|
| 28 |
+
""" Generate a word from from out[gen_idx]
|
| 29 |
+
|
| 30 |
+
args:
|
| 31 |
+
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
|
| 32 |
+
- gen_idx (int): location for which to generate for
|
| 33 |
+
- top_k (int): if >0, only sample from the top k most probable words
|
| 34 |
+
- sample (Bool): if True, sample from full distribution. Overridden by top_k
|
| 35 |
+
"""
|
| 36 |
+
logits = out.logits[:, gen_idx]
|
| 37 |
+
if temperature is not None:
|
| 38 |
+
logits = logits / temperature
|
| 39 |
+
if top_k > 0:
|
| 40 |
+
kth_vals, kth_idx = logits.topk(top_k, dim=-1)
|
| 41 |
+
dist = torch.distributions.categorical.Categorical(logits=kth_vals)
|
| 42 |
+
idx = kth_idx.gather(dim=1,
|
| 43 |
+
index=dist.sample().unsqueeze(-1)).squeeze(-1)
|
| 44 |
+
elif sample:
|
| 45 |
+
dist = torch.distributions.categorical.Categorical(logits=logits)
|
| 46 |
+
idx = dist.sample() # removed superfluous squeeze(-1)
|
| 47 |
+
else:
|
| 48 |
+
idx = torch.argmax(logits, dim=-1)
|
| 49 |
+
return idx.tolist() if return_list else idx
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# adapted from https://github.com/nyu-dl/bert-gen
|
| 53 |
+
def parallel_sequential_generation(seed_text,
|
| 54 |
+
seed_end_text,
|
| 55 |
+
max_len=max_len,
|
| 56 |
+
top_k=top_k,
|
| 57 |
+
temperature=temperature,
|
| 58 |
+
max_iter=max_iter,
|
| 59 |
+
burnin=burnin):
|
| 60 |
+
""" Generate for one random position at a timestep
|
| 61 |
+
|
| 62 |
+
args:
|
| 63 |
+
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
|
| 64 |
+
"""
|
| 65 |
+
inp = tokenizer(seed_text + tokenizer.mask_token * max_len + seed_end_text,
|
| 66 |
+
return_tensors='pt')
|
| 67 |
+
masked_tokens = np.where(
|
| 68 |
+
inp['input_ids'][0].numpy() == tokenizer.mask_token_id)[0]
|
| 69 |
+
seed_len = masked_tokens[0]
|
| 70 |
+
if cuda:
|
| 71 |
+
inp = inp.to('cuda')
|
| 72 |
+
|
| 73 |
+
for ii in range(max_iter):
|
| 74 |
+
kk = np.random.randint(0, max_len)
|
| 75 |
+
out = model(**inp)
|
| 76 |
+
topk = top_k if (ii >= burnin) else 0
|
| 77 |
+
idxs = generate_step(out,
|
| 78 |
+
gen_idx=seed_len + kk,
|
| 79 |
+
top_k=topk,
|
| 80 |
+
temperature=temperature,
|
| 81 |
+
sample=(ii < burnin))
|
| 82 |
+
inp['input_ids'][0][seed_len + kk] = idxs[0]
|
| 83 |
+
|
| 84 |
+
tokens = inp['input_ids'].cpu().numpy()[0][masked_tokens]
|
| 85 |
+
tokens = tokens[(np.where((tokens != tokenizer.eos_token_id)
|
| 86 |
+
& (tokens != tokenizer.bos_token_id)))]
|
| 87 |
+
return tokenizer.decode(tokens)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def inbertolate(doc,
|
| 91 |
+
max_len=15,
|
| 92 |
+
top_k=0,
|
| 93 |
+
temperature=None,
|
| 94 |
+
max_iter=300,
|
| 95 |
+
burnin=200):
|
| 96 |
+
new_doc = ''
|
| 97 |
+
paras = doc.split('\n')
|
| 98 |
+
|
| 99 |
+
for para in paras:
|
| 100 |
+
para = sent_tokenize(para)
|
| 101 |
+
if para == '':
|
| 102 |
+
new_doc += '\n'
|
| 103 |
+
continue
|
| 104 |
+
para += ['']
|
| 105 |
+
|
| 106 |
+
for sentence in range(len(para) - 1):
|
| 107 |
+
new_doc += para[sentence] + ' '
|
| 108 |
+
new_doc += parallel_sequential_generation(para[sentence],
|
| 109 |
+
para[sentence + 1],
|
| 110 |
+
max_len=max_len,
|
| 111 |
+
top_k=top_k,
|
| 112 |
+
temperature=temperature,
|
| 113 |
+
burnin=burnin,
|
| 114 |
+
max_iter=max_iter) + ' '
|
| 115 |
+
|
| 116 |
+
new_doc += '\n'
|
| 117 |
+
return new_doc
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
if __name__ == '__main__':
|
| 121 |
+
block = gr.Blocks(css='.container')
|
| 122 |
+
with block:
|
| 123 |
+
gr.Markdown("<h1><center>inBERTolate</center></h1>")
|
| 124 |
+
gr.Markdown(
|
| 125 |
+
"<center>Hit your word count by using BERT to pad out your essays!</center>"
|
| 126 |
+
)
|
| 127 |
+
gr.Interface(
|
| 128 |
+
fn=inbertolate,
|
| 129 |
+
inputs=[
|
| 130 |
+
gr.Textbox(label="Text", lines=7),
|
| 131 |
+
gr.Slider(label="Maximum length to insert between sentences",
|
| 132 |
+
minimum=1,
|
| 133 |
+
maximum=40,
|
| 134 |
+
step=1,
|
| 135 |
+
value=max_len),
|
| 136 |
+
gr.Slider(label="Top k", minimum=0, maximum=200, value=top_k),
|
| 137 |
+
gr.Slider(label="Temperature",
|
| 138 |
+
minimum=0,
|
| 139 |
+
maximum=2,
|
| 140 |
+
value=temperature),
|
| 141 |
+
gr.Slider(label="Maximum iterations",
|
| 142 |
+
minimum=0,
|
| 143 |
+
maximum=1000,
|
| 144 |
+
value=max_iter),
|
| 145 |
+
gr.Slider(label="Burn-in",
|
| 146 |
+
minimum=0,
|
| 147 |
+
maximum=500,
|
| 148 |
+
value=burnin),
|
| 149 |
+
],
|
| 150 |
+
outputs=gr.Textbox(label="Expanded text", lines=24))
|
| 151 |
+
block.launch(server_name='0.0.0.0')
|