Spaces:
Running
on
Zero
Running
on
Zero
Commit
ยท
ce80858
1
Parent(s):
06529b5
Localize UI to Korean and add CLAUDE.md
Browse files- Translated all UI elements to Korean (labels, buttons, messages)
- Added CLAUDE.md documentation for future Claude Code instances
๐ค Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <[email protected]>
CLAUDE.md
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CLAUDE.md
|
| 2 |
+
|
| 3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
| 4 |
+
|
| 5 |
+
## Project Overview
|
| 6 |
+
|
| 7 |
+
This is a Hugging Face Gradio Space that implements a FLUX.2-dev image generation application. FLUX.2-dev is a 32B parameter rectified flow model capable of generating, editing, and combining images based on text instructions.
|
| 8 |
+
|
| 9 |
+
The application uses a remote text encoder service and applies AOT (Ahead-of-Time) compilation optimizations for the transformer blocks to improve inference performance on ZeroGPU infrastructure.
|
| 10 |
+
|
| 11 |
+
## Architecture
|
| 12 |
+
|
| 13 |
+
### Core Components
|
| 14 |
+
|
| 15 |
+
- **app.py**: Main Gradio application entry point
|
| 16 |
+
- Handles UI setup and user interactions
|
| 17 |
+
- Implements the `infer()` function decorated with `@spaces.GPU(duration=get_duration)` for dynamic GPU allocation
|
| 18 |
+
- Uses `remote_text_encoder()` to offload text encoding to an external Gradio client (`multimodalart/mistral-text-encoder`)
|
| 19 |
+
- Pipeline initialization with text encoder set to None (external text encoding)
|
| 20 |
+
- Sets attention backend to `"_flash_3_hub"` for optimized attention computation
|
| 21 |
+
|
| 22 |
+
- **optimization.py**: AOT compilation optimization module
|
| 23 |
+
- `optimize_pipeline_()` function compiles transformer blocks using torch.export and AOT Inductor
|
| 24 |
+
- Handles both 'double' and 'single' transformer block types
|
| 25 |
+
- Uses dynamic shapes to support variable image sequence lengths (0-3 images at 1024x1024)
|
| 26 |
+
- Leverages `spaces.aoti_capture()`, `torch.export.export()`, and `spaces.aoti_compile()` for compilation
|
| 27 |
+
- Replaces block forward methods with `ZeroGPUCompiledModel` instances
|
| 28 |
+
|
| 29 |
+
### Key Design Patterns
|
| 30 |
+
|
| 31 |
+
1. **Remote Text Encoding**: Text encoding is offloaded to a separate Gradio service to reduce memory footprint and optimize GPU usage for the main diffusion pipeline.
|
| 32 |
+
|
| 33 |
+
2. **Dynamic GPU Duration**: The `get_duration()` function dynamically calculates GPU duration based on the number of input images and inference steps, optimizing resource allocation on ZeroGPU infrastructure.
|
| 34 |
+
|
| 35 |
+
3. **AOT Compilation**: Transformer blocks are compiled ahead-of-time with specific dynamic shapes and inductor configurations to maximize performance during inference.
|
| 36 |
+
|
| 37 |
+
4. **Multi-Image Support**: The pipeline supports optional input images for image editing and combination tasks via the gallery input component.
|
| 38 |
+
|
| 39 |
+
## Development Commands
|
| 40 |
+
|
| 41 |
+
### Running the Application
|
| 42 |
+
|
| 43 |
+
```bash
|
| 44 |
+
python app.py
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
The Gradio app will launch and be accessible at the provided local URL (default: http://127.0.0.1:7860).
|
| 48 |
+
|
| 49 |
+
### Dependencies
|
| 50 |
+
|
| 51 |
+
Install dependencies from requirements.txt:
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
pip install -r requirements.txt
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
Note: The repository uses a specific diffusers commit from GitHub rather than the PyPI release.
|
| 58 |
+
|
| 59 |
+
## Important Implementation Details
|
| 60 |
+
|
| 61 |
+
### Pipeline Initialization
|
| 62 |
+
|
| 63 |
+
The pipeline is initialized with `text_encoder=None` because text encoding is handled remotely. The transformer uses Flash Attention 3 (`_flash_3_hub` backend) for optimized attention computation.
|
| 64 |
+
|
| 65 |
+
### GPU Allocation
|
| 66 |
+
|
| 67 |
+
The `@spaces.GPU(duration=get_duration)` decorator dynamically allocates GPU time based on:
|
| 68 |
+
- Base time: 65 seconds
|
| 69 |
+
- Additional time per inference step: 1 + 0.7 ร number_of_input_images seconds
|
| 70 |
+
|
| 71 |
+
### Transformer Block Compilation
|
| 72 |
+
|
| 73 |
+
When modifying the optimization logic in optimization.py:
|
| 74 |
+
- The `TRANSFORMER_IMAGE_DIM` ranges from 4096 (0 images) to 16384 (3 images at 1024ร1024)
|
| 75 |
+
- Dynamic shapes are critical for supporting variable-length image sequences
|
| 76 |
+
- Both 'double' and 'single' transformer blocks must be compiled separately
|
| 77 |
+
- The compilation process takes up to 1200 seconds (20 minutes) per block type
|
| 78 |
+
|
| 79 |
+
### Image Input Handling
|
| 80 |
+
|
| 81 |
+
Input images are passed as a gallery component. The infer function converts the gallery format (list of tuples) to a simple list of PIL images by extracting `item[0]` from each gallery item.
|
| 82 |
+
|
| 83 |
+
## Configuration
|
| 84 |
+
|
| 85 |
+
- **Model**: `black-forest-labs/FLUX.2-dev` from Hugging Face Hub
|
| 86 |
+
- **Device**: CUDA (bfloat16 precision)
|
| 87 |
+
- **Max Image Size**: 1024ร1024
|
| 88 |
+
- **Default Inference Steps**: 30
|
| 89 |
+
- **Default Guidance Scale**: 4.0
|
| 90 |
+
|
| 91 |
+
## Testing Notes
|
| 92 |
+
|
| 93 |
+
The application includes cached examples for both text-only and multi-image generation. Examples are cached in "lazy" mode, meaning they are computed on-demand when first accessed.
|
app.py
CHANGED
|
@@ -74,20 +74,20 @@ def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024,
|
|
| 74 |
|
| 75 |
if randomize_seed:
|
| 76 |
seed = random.randint(0, MAX_SEED)
|
| 77 |
-
|
| 78 |
# Get prompt embeddings from remote text encoder
|
| 79 |
-
progress(0.1, desc="
|
| 80 |
prompt_embeds = remote_text_encoder(prompt).to("cuda")
|
| 81 |
-
|
| 82 |
# Prepare image list (convert None or empty gallery to None)
|
| 83 |
image_list = None
|
| 84 |
if input_images is not None and len(input_images) > 0:
|
| 85 |
image_list = []
|
| 86 |
for item in input_images:
|
| 87 |
image_list.append(item[0])
|
| 88 |
-
|
| 89 |
# Generate image
|
| 90 |
-
progress(0.3, desc="
|
| 91 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 92 |
image = pipe(
|
| 93 |
prompt_embeds=prompt_embeds,
|
|
@@ -121,77 +121,77 @@ css="""
|
|
| 121 |
"""
|
| 122 |
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
-
|
| 125 |
with gr.Column(elem_id="col-container"):
|
| 126 |
gr.Markdown(f"""# FLUX.2 [dev]
|
| 127 |
-
FLUX.2 [dev]
|
| 128 |
""")
|
| 129 |
|
| 130 |
-
with gr.Accordion("
|
| 131 |
input_images = gr.Gallery(
|
| 132 |
-
label="
|
| 133 |
type="pil",
|
| 134 |
columns=3,
|
| 135 |
rows=1,
|
| 136 |
)
|
| 137 |
-
|
| 138 |
with gr.Row():
|
| 139 |
-
|
| 140 |
prompt = gr.Text(
|
| 141 |
-
label="
|
| 142 |
show_label=False,
|
| 143 |
max_lines=2,
|
| 144 |
-
placeholder="
|
| 145 |
container=False,
|
| 146 |
scale=3
|
| 147 |
)
|
| 148 |
-
|
| 149 |
-
run_button = gr.Button("
|
| 150 |
-
|
| 151 |
-
result = gr.Image(label="Result", show_label=False)
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
seed = gr.Slider(
|
| 156 |
-
label="
|
| 157 |
minimum=0,
|
| 158 |
maximum=MAX_SEED,
|
| 159 |
step=1,
|
| 160 |
value=0,
|
| 161 |
)
|
| 162 |
-
|
| 163 |
-
randomize_seed = gr.Checkbox(label="
|
| 164 |
-
|
| 165 |
with gr.Row():
|
| 166 |
-
|
| 167 |
width = gr.Slider(
|
| 168 |
-
label="
|
| 169 |
minimum=256,
|
| 170 |
maximum=MAX_IMAGE_SIZE,
|
| 171 |
step=32,
|
| 172 |
value=1024,
|
| 173 |
)
|
| 174 |
-
|
| 175 |
height = gr.Slider(
|
| 176 |
-
label="
|
| 177 |
minimum=256,
|
| 178 |
maximum=MAX_IMAGE_SIZE,
|
| 179 |
step=32,
|
| 180 |
value=1024,
|
| 181 |
)
|
| 182 |
-
|
| 183 |
with gr.Row():
|
| 184 |
-
|
| 185 |
num_inference_steps = gr.Slider(
|
| 186 |
-
label="
|
| 187 |
minimum=1,
|
| 188 |
maximum=100,
|
| 189 |
step=1,
|
| 190 |
value=30,
|
| 191 |
)
|
| 192 |
-
|
| 193 |
guidance_scale = gr.Slider(
|
| 194 |
-
label="
|
| 195 |
minimum=0.0,
|
| 196 |
maximum=10.0,
|
| 197 |
step=0.1,
|
|
|
|
| 74 |
|
| 75 |
if randomize_seed:
|
| 76 |
seed = random.randint(0, MAX_SEED)
|
| 77 |
+
|
| 78 |
# Get prompt embeddings from remote text encoder
|
| 79 |
+
progress(0.1, desc="ํ๋กฌํํธ ์ธ์ฝ๋ฉ ์ค...")
|
| 80 |
prompt_embeds = remote_text_encoder(prompt).to("cuda")
|
| 81 |
+
|
| 82 |
# Prepare image list (convert None or empty gallery to None)
|
| 83 |
image_list = None
|
| 84 |
if input_images is not None and len(input_images) > 0:
|
| 85 |
image_list = []
|
| 86 |
for item in input_images:
|
| 87 |
image_list.append(item[0])
|
| 88 |
+
|
| 89 |
# Generate image
|
| 90 |
+
progress(0.3, desc="์ด๋ฏธ์ง ์์ฑ ์ค...")
|
| 91 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 92 |
image = pipe(
|
| 93 |
prompt_embeds=prompt_embeds,
|
|
|
|
| 121 |
"""
|
| 122 |
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
+
|
| 125 |
with gr.Column(elem_id="col-container"):
|
| 126 |
gr.Markdown(f"""# FLUX.2 [dev]
|
| 127 |
+
FLUX.2 [dev]๋ ํ
์คํธ ์ง์์ฌํญ์ ๊ธฐ๋ฐ์ผ๋ก ์ด๋ฏธ์ง๋ฅผ ์์ฑ, ํธ์ง ๋ฐ ๊ฒฐํฉํ ์ ์๋ 32B ํ๋ผ๋ฏธํฐ rectified flow ๋ชจ๋ธ์
๋๋ค [[๋ชจ๋ธ](https://huggingface.co/black-forest-labs/FLUX.2-dev)], [[๋ธ๋ก๊ทธ](https://bfl.ai/blog/flux-2)]
|
| 128 |
""")
|
| 129 |
|
| 130 |
+
with gr.Accordion("์
๋ ฅ ์ด๋ฏธ์ง (์ ํ์ฌํญ)", open=False):
|
| 131 |
input_images = gr.Gallery(
|
| 132 |
+
label="์
๋ ฅ ์ด๋ฏธ์ง",
|
| 133 |
type="pil",
|
| 134 |
columns=3,
|
| 135 |
rows=1,
|
| 136 |
)
|
| 137 |
+
|
| 138 |
with gr.Row():
|
| 139 |
+
|
| 140 |
prompt = gr.Text(
|
| 141 |
+
label="ํ๋กฌํํธ",
|
| 142 |
show_label=False,
|
| 143 |
max_lines=2,
|
| 144 |
+
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์",
|
| 145 |
container=False,
|
| 146 |
scale=3
|
| 147 |
)
|
| 148 |
+
|
| 149 |
+
run_button = gr.Button("์คํ", scale=1)
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
result = gr.Image(label="๊ฒฐ๊ณผ", show_label=False)
|
| 152 |
+
|
| 153 |
+
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
| 154 |
+
|
| 155 |
seed = gr.Slider(
|
| 156 |
+
label="์๋",
|
| 157 |
minimum=0,
|
| 158 |
maximum=MAX_SEED,
|
| 159 |
step=1,
|
| 160 |
value=0,
|
| 161 |
)
|
| 162 |
+
|
| 163 |
+
randomize_seed = gr.Checkbox(label="๋๋ค ์๋", value=True)
|
| 164 |
+
|
| 165 |
with gr.Row():
|
| 166 |
+
|
| 167 |
width = gr.Slider(
|
| 168 |
+
label="๋๋น",
|
| 169 |
minimum=256,
|
| 170 |
maximum=MAX_IMAGE_SIZE,
|
| 171 |
step=32,
|
| 172 |
value=1024,
|
| 173 |
)
|
| 174 |
+
|
| 175 |
height = gr.Slider(
|
| 176 |
+
label="๋์ด",
|
| 177 |
minimum=256,
|
| 178 |
maximum=MAX_IMAGE_SIZE,
|
| 179 |
step=32,
|
| 180 |
value=1024,
|
| 181 |
)
|
| 182 |
+
|
| 183 |
with gr.Row():
|
| 184 |
+
|
| 185 |
num_inference_steps = gr.Slider(
|
| 186 |
+
label="์ถ๋ก ๋จ๊ณ ์",
|
| 187 |
minimum=1,
|
| 188 |
maximum=100,
|
| 189 |
step=1,
|
| 190 |
value=30,
|
| 191 |
)
|
| 192 |
+
|
| 193 |
guidance_scale = gr.Slider(
|
| 194 |
+
label="๊ฐ์ด๋์ค ์ค์ผ์ผ",
|
| 195 |
minimum=0.0,
|
| 196 |
maximum=10.0,
|
| 197 |
step=0.1,
|