Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr, numpy as np
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import EsmTokenizer,EsmForMaskedLM
|
| 5 |
+
|
| 6 |
+
model_name = "facebook/esm2_t6_8M_UR50D"
|
| 7 |
+
tokenizer = EsmTokenizer.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
device = torch.device("cpu")
|
| 10 |
+
|
| 11 |
+
model_mlm = EsmForMaskedLM.from_pretrained(model_name).to(device)
|
| 12 |
+
|
| 13 |
+
# 2. Define the PLL Calculation Function
|
| 14 |
+
def predict_ppp(sequence) -> float:
|
| 15 |
+
"""
|
| 16 |
+
Calculates the ESM2 Pseudolog-Likelihood (PLL) for a single amino acid sequence.
|
| 17 |
+
|
| 18 |
+
PLL = sum_i( log P(x_i | x_{~i}) )
|
| 19 |
+
"""
|
| 20 |
+
# Tokenize the sequence
|
| 21 |
+
# This automatically adds <CLS> and <EOS> tokens
|
| 22 |
+
input_ids = tokenizer(sequence, return_tensors='pt')['input_ids']
|
| 23 |
+
|
| 24 |
+
# The true sequence length (excluding special tokens)
|
| 25 |
+
L = len(sequence)
|
| 26 |
+
|
| 27 |
+
# The mask indices correspond to the AA sequence positions
|
| 28 |
+
# We ignore the first (<CLS>) and last (<EOS>) tokens.
|
| 29 |
+
mask_indices = torch.arange(1, L + 1)
|
| 30 |
+
|
| 31 |
+
# Accumulator for the log-likelihood sum
|
| 32 |
+
pll_sum = 0.0
|
| 33 |
+
|
| 34 |
+
# Iterate over each position in the sequence to mask it
|
| 35 |
+
for i in mask_indices:
|
| 36 |
+
# Create a copy of the input_ids
|
| 37 |
+
masked_input = input_ids.clone()
|
| 38 |
+
|
| 39 |
+
# Mask the current residue (token ID for MASK is 1)
|
| 40 |
+
masked_input[0, i] = tokenizer.mask_token_id
|
| 41 |
+
|
| 42 |
+
# Get model logits (unnormalized log-probabilities)
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
outputs = model_mlm(masked_input)
|
| 45 |
+
logits = outputs.logits # shape: (batch_size, seq_len, vocab_size)
|
| 46 |
+
|
| 47 |
+
# Extract the log-probabilities for the prediction at the masked position
|
| 48 |
+
# We use log_softmax to get log-probabilities
|
| 49 |
+
log_probs = torch.log_softmax(logits[0, i], dim=-1)
|
| 50 |
+
|
| 51 |
+
# Get the token ID of the *actual* residue at the masked position
|
| 52 |
+
target_token_id = input_ids[0, i].item()
|
| 53 |
+
|
| 54 |
+
# Get the log-probability of the actual residue
|
| 55 |
+
log_prob_of_target = log_probs[target_token_id].item()
|
| 56 |
+
|
| 57 |
+
# Add to the sum
|
| 58 |
+
pll_sum += log_prob_of_target
|
| 59 |
+
L = len(sequence)
|
| 60 |
+
ppp = np.exp(-pll_sum / L)
|
| 61 |
+
|
| 62 |
+
return ppp
|
| 63 |
+
|
| 64 |
+
demo = gr.Interface(
|
| 65 |
+
fn=predict_ppp,
|
| 66 |
+
inputs=[
|
| 67 |
+
gr.Textbox(label="Enter Protein Amino Acid Sequence (1-letter code)",
|
| 68 |
+
placeholder="ACDEFGHIKLMNPQRSTVWY"),
|
| 69 |
+
],
|
| 70 |
+
outputs="text",
|
| 71 |
+
title="Nano Protein Language Model for Pseudo Perplexity (PPP) prediction of a protein sequence",
|
| 72 |
+
description="Enter an amino acid sequence (using the 1-letter code) to predict its Pseudo Perplexity (PPP)",
|
| 73 |
+
examples=[
|
| 74 |
+
["MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG"], # Example sequence
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
demo.launch()
|