Spaces:
Build error
Build error
Commit
·
ee275ef
0
Parent(s):
Initial commit
Browse files- .idea/.gitignore +3 -0
- .idea/inspectionProfiles/Project_Default.xml +14 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/senti-analy-repo.iml +8 -0
- .idea/vcs.xml +6 -0
- app.py +182 -0
- requirements.txt +0 -0
.idea/.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Default ignored files
|
| 2 |
+
/shelf/
|
| 3 |
+
/workspace.xml
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<component name="InspectionProjectProfileManager">
|
| 2 |
+
<profile version="1.0">
|
| 3 |
+
<option name="myName" value="Project Default" />
|
| 4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
| 5 |
+
<option name="ignoredPackages">
|
| 6 |
+
<value>
|
| 7 |
+
<list size="1">
|
| 8 |
+
<item index="0" class="java.lang.String" itemvalue="tf_keras" />
|
| 9 |
+
</list>
|
| 10 |
+
</value>
|
| 11 |
+
</option>
|
| 12 |
+
</inspection_tool>
|
| 13 |
+
</profile>
|
| 14 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<component name="InspectionProjectProfileManager">
|
| 2 |
+
<settings>
|
| 3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
| 4 |
+
<version value="1.0" />
|
| 5 |
+
</settings>
|
| 6 |
+
</component>
|
.idea/misc.xml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (senti-analy-repo)" project-jdk-type="Python SDK" />
|
| 4 |
+
</project>
|
.idea/modules.xml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectModuleManager">
|
| 4 |
+
<modules>
|
| 5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/senti-analy-repo.iml" filepath="$PROJECT_DIR$/.idea/senti-analy-repo.iml" />
|
| 6 |
+
</modules>
|
| 7 |
+
</component>
|
| 8 |
+
</project>
|
.idea/senti-analy-repo.iml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<module type="PYTHON_MODULE" version="4">
|
| 3 |
+
<component name="NewModuleRootManager">
|
| 4 |
+
<content url="file://$MODULE_DIR$" />
|
| 5 |
+
<orderEntry type="jdk" jdkName="Python 3.11 (senti-analy-repo)" jdkType="Python SDK" />
|
| 6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
| 7 |
+
</component>
|
| 8 |
+
</module>
|
.idea/vcs.xml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="VcsDirectoryMappings">
|
| 4 |
+
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
| 5 |
+
</component>
|
| 6 |
+
</project>
|
app.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from wordcloud import WordCloud, STOPWORDS
|
| 5 |
+
from reportlab.lib.pagesizes import letter
|
| 6 |
+
from reportlab.pdfgen import canvas
|
| 7 |
+
from reportlab.lib.units import inch
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 10 |
+
import torch
|
| 11 |
+
import chardet
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
# Load model and tokenizer
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
| 16 |
+
model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
| 17 |
+
|
| 18 |
+
# Function to analyze sentiment
|
| 19 |
+
def analyze_sentiment(text):
|
| 20 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
outputs = model(**inputs)
|
| 23 |
+
scores = outputs.logits.softmax(dim=1)
|
| 24 |
+
labels = ['NEGATIVE', 'POSITIVE']
|
| 25 |
+
score, label = torch.max(scores, dim=1)
|
| 26 |
+
return {"label": labels[label.item()], "score": score.item()}
|
| 27 |
+
|
| 28 |
+
# Function to detect file encoding
|
| 29 |
+
def detect_encoding(file):
|
| 30 |
+
rawdata = file.read()
|
| 31 |
+
result = chardet.detect(rawdata)
|
| 32 |
+
return result['encoding']
|
| 33 |
+
|
| 34 |
+
def generate_pdf(pie_chart_path, pos_wordcloud_path, neg_wordcloud_path):
|
| 35 |
+
pdf_output = BytesIO()
|
| 36 |
+
pdf_height = 16.5 * inch # Total vertical height calculated
|
| 37 |
+
pdf_width = 8.27 * inch # A4 width
|
| 38 |
+
c = canvas.Canvas(pdf_output, pagesize=(pdf_width, pdf_height))
|
| 39 |
+
|
| 40 |
+
# Set starting vertical position
|
| 41 |
+
y_position = pdf_height - 1 * inch
|
| 42 |
+
|
| 43 |
+
# Add title
|
| 44 |
+
c.setFont("Helvetica-Bold", 20)
|
| 45 |
+
c.drawString(2.2 * inch, y_position, "Sentiment Analysis Report")
|
| 46 |
+
|
| 47 |
+
# Update vertical position after title
|
| 48 |
+
y_position -= 2 * inch
|
| 49 |
+
|
| 50 |
+
# Add pie chart with width 5 inches and height double the width
|
| 51 |
+
pie_chart_width = 5 * inch
|
| 52 |
+
pie_chart_height = 4 * inch
|
| 53 |
+
c.drawImage(pie_chart_path, 1.5 * inch, y_position - pie_chart_height, width=pie_chart_width, height=pie_chart_height)
|
| 54 |
+
|
| 55 |
+
# Update vertical position after pie chart
|
| 56 |
+
y_position -= (pie_chart_height + 1 * inch) # Add some spacing
|
| 57 |
+
|
| 58 |
+
# Add Positive Keywords heading
|
| 59 |
+
c.setFont("Helvetica-Bold", 12)
|
| 60 |
+
c.drawString(3 * inch, y_position, "Positive Keywords")
|
| 61 |
+
|
| 62 |
+
# Add positive word cloud
|
| 63 |
+
c.drawImage(pos_wordcloud_path, 1 * inch, y_position - 3.3 * inch, width=6 * inch, height=3 * inch) # 2:1 ratio
|
| 64 |
+
|
| 65 |
+
# Update vertical position after positive word cloud
|
| 66 |
+
y_position -= (3 * inch + 1 * inch) # Add some spacing
|
| 67 |
+
|
| 68 |
+
# Add Negative Keywords heading
|
| 69 |
+
c.setFont("Helvetica-Bold", 12)
|
| 70 |
+
c.drawString(3 * inch, y_position, "Negative Keywords")
|
| 71 |
+
|
| 72 |
+
# Add negative word cloud
|
| 73 |
+
c.drawImage(neg_wordcloud_path, 1 * inch, y_position - 3.3 * inch, width=6 * inch, height=3 * inch) # 2:1 ratio
|
| 74 |
+
|
| 75 |
+
c.save()
|
| 76 |
+
pdf_output.seek(0)
|
| 77 |
+
|
| 78 |
+
return pdf_output
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# Streamlit UI
|
| 82 |
+
st.title("Sentiment Analysis and Reporting")
|
| 83 |
+
|
| 84 |
+
# Initialize session state for button visibility
|
| 85 |
+
if 'show_pdf_download' not in st.session_state:
|
| 86 |
+
st.session_state.show_pdf_download = False
|
| 87 |
+
|
| 88 |
+
# Sidebar for encoding detection and reset button
|
| 89 |
+
st.sidebar.header("File Encoding Checker")
|
| 90 |
+
|
| 91 |
+
# File uploader in the sidebar
|
| 92 |
+
uploaded_file = st.sidebar.file_uploader("Upload CSV file for Encoding Check", type=["csv"])
|
| 93 |
+
|
| 94 |
+
if uploaded_file:
|
| 95 |
+
# Detect the encoding
|
| 96 |
+
encoding = detect_encoding(uploaded_file)
|
| 97 |
+
st.sidebar.write(f"Detected encoding: {encoding}")
|
| 98 |
+
|
| 99 |
+
# Reset button in the sidebar
|
| 100 |
+
if st.sidebar.button("Reset Analysis"):
|
| 101 |
+
if os.path.exists("sentiment_pie_chart.png"):
|
| 102 |
+
os.remove("sentiment_pie_chart.png")
|
| 103 |
+
if os.path.exists("pos_wordcloud.png"):
|
| 104 |
+
os.remove("pos_wordcloud.png")
|
| 105 |
+
if os.path.exists("neg_wordcloud.png"):
|
| 106 |
+
os.remove("neg_wordcloud.png")
|
| 107 |
+
st.sidebar.write("Files deleted. Please re-upload a file to start over.")
|
| 108 |
+
|
| 109 |
+
# File uploader for sentiment analysis
|
| 110 |
+
uploaded_file = st.file_uploader("Upload CSV file for Sentiment Analysis", type=["csv"])
|
| 111 |
+
|
| 112 |
+
# Dropdown for encoding specification in the main panel
|
| 113 |
+
encodings = ['utf-8', 'latin-1', 'ISO-8859-1', 'ASCII', 'UTF-16', 'UTF-32', 'ANSI', "Windows-1251", 'Windows-1252']
|
| 114 |
+
user_encoding = st.selectbox("Select Encoding", options=encodings, index=0)
|
| 115 |
+
|
| 116 |
+
# Button to start processing
|
| 117 |
+
if st.button("Go"):
|
| 118 |
+
if uploaded_file:
|
| 119 |
+
try:
|
| 120 |
+
# Load the CSV file into DataFrame with specified encoding
|
| 121 |
+
uploaded_file.seek(0) # Reset the file pointer to the beginning
|
| 122 |
+
df = pd.read_csv(uploaded_file, encoding=user_encoding)
|
| 123 |
+
except UnicodeDecodeError:
|
| 124 |
+
st.error("Error decoding the file. Please specify the correct encoding.")
|
| 125 |
+
else:
|
| 126 |
+
# Check if the DataFrame has exactly one column
|
| 127 |
+
if df.shape[1] != 1:
|
| 128 |
+
st.warning("The CSV file should only contain one column with review data.")
|
| 129 |
+
else:
|
| 130 |
+
# Rename the column to 'review'
|
| 131 |
+
df.columns = ['review']
|
| 132 |
+
|
| 133 |
+
# Clean up the DataFrame
|
| 134 |
+
df['review'] = df['review'].astype(str).str.strip()
|
| 135 |
+
df = df[df['review'].apply(len) <= 512]
|
| 136 |
+
|
| 137 |
+
# Apply sentiment analysis
|
| 138 |
+
df['sentiment'] = df['review'].apply(analyze_sentiment)
|
| 139 |
+
df['sentiment_label'] = df['sentiment'].apply(lambda x: x['label'])
|
| 140 |
+
df['sentiment_score'] = df['sentiment'].apply(lambda x: x['score'])
|
| 141 |
+
|
| 142 |
+
# Drop the original 'sentiment' column
|
| 143 |
+
df = df.drop(columns=['sentiment'])
|
| 144 |
+
|
| 145 |
+
# Pie chart data
|
| 146 |
+
sentiment_counts = df['sentiment_label'].value_counts()
|
| 147 |
+
|
| 148 |
+
# Create pie chart
|
| 149 |
+
fig, ax = plt.subplots()
|
| 150 |
+
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=45)
|
| 151 |
+
ax.set_title('Distribution of Sentiment')
|
| 152 |
+
pie_chart_path = "sentiment_pie_chart.png"
|
| 153 |
+
plt.savefig(pie_chart_path)
|
| 154 |
+
|
| 155 |
+
# Create word clouds
|
| 156 |
+
stopwords = set(STOPWORDS)
|
| 157 |
+
|
| 158 |
+
pos_reviews = df[df['sentiment_label'] == 'POSITIVE']['review'].str.cat(sep=' ')
|
| 159 |
+
neg_reviews = df[df['sentiment_label'] == 'NEGATIVE']['review'].str.cat(sep=' ')
|
| 160 |
+
|
| 161 |
+
pos_wordcloud = WordCloud(max_font_size=80, max_words=10, background_color='white', stopwords=stopwords).generate(pos_reviews)
|
| 162 |
+
neg_wordcloud = WordCloud(max_font_size=80, max_words=10, background_color='white', stopwords=stopwords).generate(neg_reviews)
|
| 163 |
+
|
| 164 |
+
# Save word clouds to files
|
| 165 |
+
pos_wordcloud_path = "pos_wordcloud.png"
|
| 166 |
+
neg_wordcloud_path = "neg_wordcloud.png"
|
| 167 |
+
pos_wordcloud.to_file(pos_wordcloud_path)
|
| 168 |
+
neg_wordcloud.to_file(neg_wordcloud_path)
|
| 169 |
+
|
| 170 |
+
# Create PDF
|
| 171 |
+
pdf_output = generate_pdf(pie_chart_path, pos_wordcloud_path, neg_wordcloud_path)
|
| 172 |
+
|
| 173 |
+
# Display options
|
| 174 |
+
st.write("Processing complete!")
|
| 175 |
+
|
| 176 |
+
# Update session state to show the appropriate buttons
|
| 177 |
+
st.session_state.show_pdf_download = True
|
| 178 |
+
|
| 179 |
+
# Display buttons
|
| 180 |
+
download_pdf = st.download_button("Download PDF Report", pdf_output, file_name="sentiment_analysis_report.pdf", mime="application/pdf")
|
| 181 |
+
else:
|
| 182 |
+
st.info("Please upload a CSV file to get started.")
|
requirements.txt
ADDED
|
Binary file (3.18 kB). View file
|
|
|