Spaces:
Runtime error
Runtime error
added two models
Browse files
app.py
CHANGED
|
@@ -1,38 +1,53 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
with gr.Blocks() as demo:
|
| 5 |
with gr.Column():
|
| 6 |
prompt = gr.Textbox(label='Prompt')
|
| 7 |
n_prompt = gr.Textbox(
|
| 8 |
label='Negative Prompt',
|
| 9 |
value=
|
| 10 |
-
'
|
| 11 |
)
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
run_button = gr.Button('Run')
|
| 14 |
-
gr.Markdown("###
|
| 15 |
result = gr.Gallery(label='Output',
|
| 16 |
show_label=False,
|
| 17 |
elem_id='gallery').style(columns=1, rows=1, preview=True)
|
| 18 |
|
|
|
|
| 19 |
inputs = [
|
| 20 |
prompt,
|
| 21 |
-
n_prompt
|
|
|
|
| 22 |
]
|
|
|
|
| 23 |
prompt.submit(
|
| 24 |
-
fn=
|
| 25 |
inputs=inputs,
|
| 26 |
outputs=result
|
| 27 |
)
|
| 28 |
n_prompt.submit(
|
| 29 |
-
fn=
|
| 30 |
inputs=inputs,
|
| 31 |
outputs=result
|
| 32 |
)
|
| 33 |
|
| 34 |
run_button.click(
|
| 35 |
-
fn=
|
| 36 |
inputs=inputs,
|
| 37 |
outputs=result
|
| 38 |
)
|
|
@@ -41,6 +56,10 @@ def create_demo(process):
|
|
| 41 |
|
| 42 |
if __name__ == '__main__':
|
| 43 |
from model import Model
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
def generateImage(prompt, n_prompt, modelName):
|
| 4 |
+
|
| 5 |
+
return models[modelName].process(prompt, n_prompt)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def create_demo():
|
| 11 |
+
|
| 12 |
with gr.Blocks() as demo:
|
| 13 |
with gr.Column():
|
| 14 |
prompt = gr.Textbox(label='Prompt')
|
| 15 |
n_prompt = gr.Textbox(
|
| 16 |
label='Negative Prompt',
|
| 17 |
value=
|
| 18 |
+
'ugly, disfigured, deformed'
|
| 19 |
)
|
| 20 |
|
| 21 |
+
modelName = gr.Dropdown(choices = list(models.keys()),
|
| 22 |
+
label = "Model",
|
| 23 |
+
value=list(models.keys())[0])
|
| 24 |
+
|
| 25 |
run_button = gr.Button('Run')
|
| 26 |
+
gr.Markdown("### [Stable Diffusion Art](https://stable-diffusion-art.com/) -- tutorials and resources. Read [Model license](https://huggingface.co/spaces/CompVis/stable-diffusion-license).")
|
| 27 |
result = gr.Gallery(label='Output',
|
| 28 |
show_label=False,
|
| 29 |
elem_id='gallery').style(columns=1, rows=1, preview=True)
|
| 30 |
|
| 31 |
+
|
| 32 |
inputs = [
|
| 33 |
prompt,
|
| 34 |
+
n_prompt,
|
| 35 |
+
modelName,
|
| 36 |
]
|
| 37 |
+
|
| 38 |
prompt.submit(
|
| 39 |
+
fn=generateImage,
|
| 40 |
inputs=inputs,
|
| 41 |
outputs=result
|
| 42 |
)
|
| 43 |
n_prompt.submit(
|
| 44 |
+
fn=generateImage,
|
| 45 |
inputs=inputs,
|
| 46 |
outputs=result
|
| 47 |
)
|
| 48 |
|
| 49 |
run_button.click(
|
| 50 |
+
fn=generateImage,
|
| 51 |
inputs=inputs,
|
| 52 |
outputs=result
|
| 53 |
)
|
|
|
|
| 56 |
|
| 57 |
if __name__ == '__main__':
|
| 58 |
from model import Model
|
| 59 |
+
models = {
|
| 60 |
+
"Stable Diffusion v1.5": Model("runwayml/stable-diffusion-v1-5"),
|
| 61 |
+
"Realistic Vision v2.0": Model("SG161222/Realistic_Vision_V2.0"),
|
| 62 |
+
"Anything v3.0": Model("Linaqruf/anything-v3.0")
|
| 63 |
+
}
|
| 64 |
+
demo = create_demo()
|
| 65 |
demo.queue().launch()
|
model.py
CHANGED
|
@@ -6,6 +6,7 @@ from diffusers import DPMSolverMultistepScheduler
|
|
| 6 |
import torch
|
| 7 |
import PIL.Image
|
| 8 |
import numpy as np
|
|
|
|
| 9 |
|
| 10 |
# Check environment
|
| 11 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
|
@@ -19,11 +20,14 @@ device = "cuda"
|
|
| 19 |
|
| 20 |
|
| 21 |
class Model:
|
| 22 |
-
def __init__(self):
|
| 23 |
-
modelID = "runwayml/stable-diffusion-v1-5"
|
|
|
|
|
|
|
| 24 |
self.pipe = StableDiffusionPipeline.from_pretrained(modelID, torch_dtype=torch.float16)
|
| 25 |
self.pipe = self.pipe.to(device)
|
| 26 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
|
|
|
| 27 |
|
| 28 |
#self.pipe = StableDiffusionPipeline.from_pretrained(modelID)
|
| 29 |
#prompt = "a photo of an astronaut riding a horse on mars"
|
|
@@ -36,15 +40,20 @@ class Model:
|
|
| 36 |
num_images:int = 1,
|
| 37 |
num_steps:int = 20,
|
| 38 |
):
|
| 39 |
-
seed = np.random.randint(0, np.iinfo(np.
|
| 40 |
generator = torch.Generator(device).manual_seed(seed)
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
negative_prompt=negative_prompt,
|
| 43 |
guidance_scale=guidance_scale,
|
| 44 |
num_images_per_prompt=num_images,
|
| 45 |
num_inference_steps=num_steps,
|
| 46 |
generator=generator).images
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
|
|
|
|
| 6 |
import torch
|
| 7 |
import PIL.Image
|
| 8 |
import numpy as np
|
| 9 |
+
import datetime
|
| 10 |
|
| 11 |
# Check environment
|
| 12 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
class Model:
|
| 23 |
+
def __init__(self, modelID):
|
| 24 |
+
#modelID = "runwayml/stable-diffusion-v1-5"
|
| 25 |
+
|
| 26 |
+
self.modelID = modelID
|
| 27 |
self.pipe = StableDiffusionPipeline.from_pretrained(modelID, torch_dtype=torch.float16)
|
| 28 |
self.pipe = self.pipe.to(device)
|
| 29 |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 30 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 31 |
|
| 32 |
#self.pipe = StableDiffusionPipeline.from_pretrained(modelID)
|
| 33 |
#prompt = "a photo of an astronaut riding a horse on mars"
|
|
|
|
| 40 |
num_images:int = 1,
|
| 41 |
num_steps:int = 20,
|
| 42 |
):
|
| 43 |
+
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
| 44 |
generator = torch.Generator(device).manual_seed(seed)
|
| 45 |
+
now = datetime.datetime.now()
|
| 46 |
+
print(now)
|
| 47 |
+
print(self.modelID)
|
| 48 |
+
with torch.inference_mode():
|
| 49 |
+
images = self.pipe(prompt=prompt,
|
| 50 |
negative_prompt=negative_prompt,
|
| 51 |
guidance_scale=guidance_scale,
|
| 52 |
num_images_per_prompt=num_images,
|
| 53 |
num_inference_steps=num_steps,
|
| 54 |
generator=generator).images
|
| 55 |
|
| 56 |
+
return images
|
| 57 |
|
| 58 |
|
| 59 |
|