File size: 6,837 Bytes
726379a
 
 
 
03f436a
726379a
664fad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812d54a
 
726379a
 
 
 
 
 
 
 
 
5e4bebf
812d54a
 
 
 
 
 
 
726379a
 
5e4bebf
 
 
 
 
 
 
 
 
726379a
 
 
 
 
 
 
 
 
1c1daf9
 
 
 
 
 
 
 
726379a
 
 
 
 
812d54a
726379a
d1dca78
726379a
 
b1137c3
 
 
 
 
 
 
 
 
 
 
d42fa3e
c37f8fa
 
 
 
 
726379a
bdc79a5
 
 
 
 
 
 
 
 
 
d42fa3e
8ed1e58
 
 
 
 
726379a
bdc79a5
 
 
 
 
 
 
 
 
 
752c2b9
b8a90e2
2e0d42a
7f16259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac45c
cd7dd97
 
 
 
 
 
2e0d42a
 
752c2b9
2e0d42a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
093f8d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
import pandas as pd
import plotly.express as px

merged_df = pd.read_csv("data/merged_cloud_data.csv")

options = [
    "CPU type",
    "CPU TDP",
    "Memory",
    "GPU Type",
    "GPU Cost",
    "GPU Total Cost",
    "GPU number",
    "TDP (W)",
    "GPU Year",
    "Total TDP (W)",
    "$/Hour",
    "provider",
    "GPU TDP",
    "vCPU",
    "CPU Type",
    "GPU Memory",
    "vCPU(s)",
]
### TDP figs
#
tdp_fig = px.scatter(
    merged_df,
    x="Total TDP (W)",
    y="$/Hour",
    color="provider",
    log_x=True,
    log_y=True,
)

tdp_fig_gpu = px.scatter(
    merged_df,
    x="Total TDP (W)",
    y="$/Hour",
    color="GPU Type",
    log_x=True,
    log_y=True,
)

cost_fig = px.scatter(
    merged_df,
    x="GPU Total Cost",
    y="$/Hour",
    color="provider",
    log_y=True,
    log_x=True,
)

cost_fig_gpu = px.scatter(
    merged_df,
    x="GPU Total Cost",
    y="$/Hour",
    color="GPU Type",
    log_y=True,
    log_x=True,
)


def generate_figure(factor1, factor2, color, logx, logy):
    fig = px.scatter(
        merged_df,
        x=factor1,
        y=factor2,
        color=color,
        log_y=logx,
        log_x=logy,
    )
    return fig


with gr.Blocks() as demo:
    gr.Markdown("# Cloud Compute ☁️, Energy ⚑ and Cost πŸ’² - Comparison Tool")
    gr.Markdown(
        "## Explore the data from the blog post ['When we pay for cloud compute, what are we really paying for?'](https://huggingface.co/blog/sasha/energy-cost-compute)"
    )
    with gr.Accordion("Methodology", open=False):
        gr.Markdown(
            """
            In order to do our analysis, we gathered data from 5 major cloud compute providers – Microsoft Azure, Amazon Web Services, Google Cloud Platform,
            Scaleway Cloud, and OVH Cloud – about the price and nature of their AI-specific compute offerings (i.e. all instances that have GPUs).
            For each instance, we looked at its characteristics – the type and number of GPUs and CPUs that it contains, as well as the quantity of memory
            it contains and its storage capacity. For each CPU and GPU model, we looked up its **TDP (Thermal Design Potential)** -- its power consumption
            under the maximum theoretical load), which is an indicator of the operating expenses required to power it. For GPUs specifically, we also looked
            at the **Manufacturer's Suggested Retail Price (MSRP)**, i.e. how much that particular GPU model cost at the time of its launch, as an indicator
            of the capital expenditure required for the compute provider to buy the GPUs to begin with.
            """
        )
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Energy ⚑ vs Hourly Cost πŸ’²")
            gr.Markdown(
                "### In our analysis, we found that there is also a strong positive correlation between the two factors, across different compute providers:"
            )
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                "Double click the names of cloud providers to see the trend per company"
            )
            plt1 = gr.Plot(tdp_fig)
        with gr.Column():
            gr.Markdown(
                "Double click the names of GPU models to see the trends per GPU"
            )
            plt1 = gr.Plot(tdp_fig_gpu)
    with gr.Row():
        with gr.Column():
            gr.Markdown("## CapEx πŸ’° vs Hourly Cost πŸ’²")
            gr.Markdown(
                "### We also found that there is also a strong positive correlation the initial cost of the GPU and its cost per hour:"
            )
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                "Double click the names of cloud providers to see the trend per company"
            )
            plt1 = gr.Plot(cost_fig)
        with gr.Column():
            gr.Markdown(
                "Double click the names of GPU models to see the trends per GPU"
            )
            plt1 = gr.Plot(cost_fig_gpu)
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("## Generate your own plot πŸ“ˆ")
            x_choice = gr.Dropdown(
                options,
                value="Memory",
                label="X axis",
                info="Pick a characteristic to plot on the X (horizontal) axis",
                interactive=True,
                allow_custom_value=True,
            )
            y_choice = gr.Dropdown(
                options,
                value="$/Hour",
                label="Y axis",
                info="Pick a characteristic to plot on the Y (vertical) axis",
                interactive=True,
                allow_custom_value=True,
            )
            color_choice = gr.Dropdown(
                options,
                value="provider",
                label="Plot color",
                info="Pick a characteristic for the colors/labels",
                interactive=True,
                allow_custom_value=True,
            )
            logx = gr.Checkbox(
                label="Logarithmic X axis",
                info="Plot the X (horizontal) axis in logarithmic scale",
                value=True,
                interactive=True,
            )
            logy = gr.Checkbox(
                label="Logarithmic Y axis",
                info="Plot the Y (vertical) axis in logarithmic scale",
                value=True,
                interactive=True,
            )
        with gr.Column(scale=3):
            gr.Markdown(
                "### Choose from the dropdown lists on the left to plot different characteristics and find new trends πŸ•΅πŸ»β€β™‚οΈ"
            )
            gr.Markdown(
                "N.B. Not all combinations are possible -- if you get a blank figure, try another combination!"
            )
            fig = generate_figure("Memory", "$/Hour", "provider", True, True)
            plt = gr.Plot(fig)

            x_choice.select(
                generate_figure,
                inputs=[x_choice, y_choice, color_choice, logx, logy],
                outputs=[plt],
            )
            y_choice.select(
                generate_figure,
                inputs=[x_choice, y_choice, color_choice, logx, logy],
                outputs=[plt],
            )
            color_choice.select(
                generate_figure,
                inputs=[x_choice, y_choice, color_choice, logx, logy],
                outputs=[plt],
            )
            logx.select(
                generate_figure,
                inputs=[x_choice, y_choice, color_choice, logx, logy],
                outputs=[plt],
            )
            logy.select(
                generate_figure,
                inputs=[x_choice, y_choice, color_choice, logx, logy],
                outputs=[plt],
            )
demo.launch()