bipulsardar421 commited on
Commit
e4fdbf4
·
1 Parent(s): 6a3ed36
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -5,18 +5,20 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
5
  HF_TOKEN = os.environ.get("HF_TOKEN")
6
  MODEL = "google/gemma-3-270m"
7
 
8
- tokenizer = AutoTokenizer.from_pretrained(MODEL, use_auth_token=HF_TOKEN)
9
- model = AutoModelForCausalLM.from_pretrained(MODEL, use_auth_token=HF_TOKEN)
10
 
11
  def chat(message, history):
12
  inputs = tokenizer(message, return_tensors="pt")
13
  outputs = model.generate(**inputs, max_new_tokens=128)
14
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
15
- return response
 
 
16
 
17
  gr.Interface(
18
  fn=chat,
19
  inputs=["text", "state"],
20
- outputs=["text"],
21
  title="Gemma 3 (270M)"
22
  ).launch()
 
5
  HF_TOKEN = os.environ.get("HF_TOKEN")
6
  MODEL = "google/gemma-3-270m"
7
 
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HF_TOKEN)
9
+ model = AutoModelForCausalLM.from_pretrained(MODEL, token=HF_TOKEN)
10
 
11
  def chat(message, history):
12
  inputs = tokenizer(message, return_tensors="pt")
13
  outputs = model.generate(**inputs, max_new_tokens=128)
14
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
15
+
16
+ history = history + [(message, response)]
17
+ return response, history
18
 
19
  gr.Interface(
20
  fn=chat,
21
  inputs=["text", "state"],
22
+ outputs=["text", "state"], # <-- required
23
  title="Gemma 3 (270M)"
24
  ).launch()