Delete paper2slides.py
Browse files- paper2slides.py +0 -703
paper2slides.py
DELETED
|
@@ -1,703 +0,0 @@
|
|
| 1 |
-
slide_datasource = {
|
| 2 |
-
'introduction': ['abstract', 'Introduction'],
|
| 3 |
-
'objective': ['abstract', 'Introduction'],
|
| 4 |
-
'methodoloy': ['abstract', 'Introduction', 'Conclusion', 'Methods'],
|
| 5 |
-
'results': ['abstract', 'Experiments', 'Conclusion'],
|
| 6 |
-
'conclusion': ['abstract', 'Introduction', 'Conclusion'],
|
| 7 |
-
}
|
| 8 |
-
|
| 9 |
-
from pdf_helper import PDFPaper4LLMParser, dict_to_markdown_list
|
| 10 |
-
from sambaAPI import call_llama_chat, MODEL_ALIAS
|
| 11 |
-
from pdf_helper import markdown_to_slide_dicts
|
| 12 |
-
from pptx_utils import Dict2PPT, os
|
| 13 |
-
import json
|
| 14 |
-
import time
|
| 15 |
-
import string
|
| 16 |
-
|
| 17 |
-
SLIDE_SEP = '<slide_sep>'
|
| 18 |
-
|
| 19 |
-
def trim_string(s):
|
| 20 |
-
return s.strip(string.whitespace + string.punctuation)
|
| 21 |
-
|
| 22 |
-
section_title_key_phrases = {
|
| 23 |
-
'Introduction': ['introduction'],
|
| 24 |
-
'Related Works': ['related work'],
|
| 25 |
-
'Methods': ['method', 'approach'],
|
| 26 |
-
'Experiments': ['experiment'],
|
| 27 |
-
'Conclusion': ['conclusion'],
|
| 28 |
-
'Acknowledgements': ['acknowledgement'],
|
| 29 |
-
'References': ['references', ' references'], #
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
def find_string_index(string_list, target: str):
|
| 33 |
-
"""
|
| 34 |
-
Returns the index of the target string in the list.
|
| 35 |
-
If the target is not found, returns -1.
|
| 36 |
-
|
| 37 |
-
Parameters:
|
| 38 |
-
string_list (list): A list of strings
|
| 39 |
-
target (str): The string to find in the list
|
| 40 |
-
|
| 41 |
-
Returns:
|
| 42 |
-
int: The index of the target string, or -1 if not found
|
| 43 |
-
"""
|
| 44 |
-
try:
|
| 45 |
-
return string_list.index(target)
|
| 46 |
-
except ValueError:
|
| 47 |
-
return -1
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def get_section_category(section_name: str):
|
| 51 |
-
"""
|
| 52 |
-
Scientist paper section name mapping
|
| 53 |
-
"""
|
| 54 |
-
for key, phrases in section_title_key_phrases.items():
|
| 55 |
-
for phrase in phrases:
|
| 56 |
-
if phrase in section_name.lower():
|
| 57 |
-
return key
|
| 58 |
-
return 'Other'
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
class PaperReader(object):
|
| 62 |
-
def __init__(self, page_chunks=False):
|
| 63 |
-
self.paper_reader = PDFPaper4LLMParser(page_chunks=page_chunks)
|
| 64 |
-
|
| 65 |
-
def pdf2text(self, paper_pdf_path: str):
|
| 66 |
-
paper_content = self.paper_reader.run(pdf_path=paper_pdf_path, verbose=False)
|
| 67 |
-
return paper_content
|
| 68 |
-
|
| 69 |
-
def structurize(self, main_text_array: list):
|
| 70 |
-
section_names = [_['title'] for _ in main_text_array]
|
| 71 |
-
section_name_topics = [get_section_category(_) for _ in section_names]
|
| 72 |
-
introduction_idx = find_string_index(section_name_topics, target='Introduction')
|
| 73 |
-
refference_idx = find_string_index(section_name_topics, target='References')
|
| 74 |
-
experiment_idx = find_string_index(section_name_topics, target='Experiments')
|
| 75 |
-
conclusion_idx = find_string_index(section_name_topics, target='Conclusion')
|
| 76 |
-
if refference_idx > 0:
|
| 77 |
-
for idx in range(len(section_name_topics)):
|
| 78 |
-
if idx < refference_idx:
|
| 79 |
-
if section_name_topics[idx] == 'Other':
|
| 80 |
-
section_name_topics[idx] = 'Methods'
|
| 81 |
-
elif idx > refference_idx:
|
| 82 |
-
if not ('appendix' in section_name_topics[idx].lower()):
|
| 83 |
-
section_name_topics[idx] = 'Appendix: ' + section_name_topics[idx]
|
| 84 |
-
else:
|
| 85 |
-
continue
|
| 86 |
-
# print(section_name_topics)
|
| 87 |
-
if experiment_idx > 0:
|
| 88 |
-
for idx in range(experiment_idx +1, refference_idx):
|
| 89 |
-
if section_name_topics[idx] == 'Methods':
|
| 90 |
-
section_name_topics[idx] = 'Experiments'
|
| 91 |
-
# print(section_name_topics)
|
| 92 |
-
experiment_idx = find_string_index(section_name_topics, target='Experiments')
|
| 93 |
-
method_idx = find_string_index(section_name_topics, target='Methods')
|
| 94 |
-
relatedwork_idx = find_string_index(section_name_topics, target='Related Works')
|
| 95 |
-
ack_idx = find_string_index(section_name_topics, target='Acknowledgements')
|
| 96 |
-
|
| 97 |
-
paper_structure_dict = {
|
| 98 |
-
'Introduction': [introduction_idx],
|
| 99 |
-
'Related Works': [relatedwork_idx],
|
| 100 |
-
'References': [refference_idx],
|
| 101 |
-
'Conclusion': [conclusion_idx],
|
| 102 |
-
'Acknowledgements': [ack_idx]
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
## Experiments and methodology
|
| 106 |
-
method_idx_array = []
|
| 107 |
-
if method_idx >=0:
|
| 108 |
-
for idx in range(method_idx, len(section_name_topics)):
|
| 109 |
-
if section_name_topics[idx] == 'Methods':
|
| 110 |
-
method_idx_array.append(idx)
|
| 111 |
-
else:
|
| 112 |
-
break
|
| 113 |
-
else:
|
| 114 |
-
if introduction_idx >=0 and conclusion_idx >=0:
|
| 115 |
-
for idx in range(introduction_idx+1, conclusion_idx):
|
| 116 |
-
if section_name_topics[idx] == 'Methods':
|
| 117 |
-
method_idx_array.append(idx)
|
| 118 |
-
else:
|
| 119 |
-
break
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
exp_idx_array = []
|
| 123 |
-
if experiment_idx >=0:
|
| 124 |
-
for idx in range(experiment_idx, len(section_name_topics)):
|
| 125 |
-
if section_name_topics[idx] == 'Experiments':
|
| 126 |
-
exp_idx_array.append(idx)
|
| 127 |
-
else:
|
| 128 |
-
break
|
| 129 |
-
else:
|
| 130 |
-
if introduction_idx >=0 and conclusion_idx >=0:
|
| 131 |
-
for idx in range(introduction_idx+1, conclusion_idx):
|
| 132 |
-
if section_name_topics[idx] == 'Experiments':
|
| 133 |
-
exp_idx_array.append(idx)
|
| 134 |
-
else:
|
| 135 |
-
break
|
| 136 |
-
|
| 137 |
-
paper_structure_dict['Experiments'] = exp_idx_array
|
| 138 |
-
paper_structure_dict['Methods'] = method_idx_array
|
| 139 |
-
return section_name_topics, paper_structure_dict
|
| 140 |
-
|
| 141 |
-
def run(self, paper_file_name: str):
|
| 142 |
-
start_time = time.time()
|
| 143 |
-
paper_content = self.pdf2text(paper_pdf_path=paper_file_name)
|
| 144 |
-
section_name_topics, paper_structure_dict = self.structurize(main_text_array=paper_content['main_text'])
|
| 145 |
-
paper_content['structure'] = paper_structure_dict
|
| 146 |
-
paper_content['section_topic'] = section_name_topics
|
| 147 |
-
print('Runtime for pdf2text = {:.4f} seconds.'.format(time.time() - start_time))
|
| 148 |
-
return paper_content
|
| 149 |
-
|
| 150 |
-
### 1. General System Prompt
|
| 151 |
-
|
| 152 |
-
SCHOLAR_PROMPT = """
|
| 153 |
-
You are an assistant being skilled at critically reading and analyzing academic papers to extract key insights, trends, and findings.
|
| 154 |
-
"""
|
| 155 |
-
|
| 156 |
-
### 2. Paper Outline Generation from Abstract
|
| 157 |
-
|
| 158 |
-
ABSTRACT_SUMMARY_PROMPT = """
|
| 159 |
-
You are given the **title** and **abstract** of an academic paper. Please first identity the research topic, and then extract the following aspects in a minimal title draft (max 15 words) for PowerPoint presentation:
|
| 160 |
-
|
| 161 |
-
1. **Background**: Introduces the research context and importance.
|
| 162 |
-
2. **Research Problem**: Identifies the specific problem or knowledge gap.
|
| 163 |
-
3. **Objectives**: States the research goals or hypotheses.
|
| 164 |
-
4. **Methodology**: Summarizes the research design and key methods.
|
| 165 |
-
5. **Results**: Highlights the most significant findings.
|
| 166 |
-
6. **Conclusions**: Provides the main takeaways and their relation to the research question.
|
| 167 |
-
|
| 168 |
-
Reminder: Strictly output in JSON format **only**, using the keys: "Research topic", "Background", "Research problem", "Objectives", "Methodology", "Results" and "Conclusions".
|
| 169 |
-
"""
|
| 170 |
-
|
| 171 |
-
### 3. Evidence extraction from main paper text for "Background"
|
| 172 |
-
BACKGROUD_EVIDENCE_PROMPT = """
|
| 173 |
-
You are given the **title**, briefly description of **problem backgroud** and **introduction** of a research paper. From the introduction, extract an itemized list of **1 to 3 pieces of evidence** that support the problem background, each evidence should be described in a **minimal draft (min 10 words and max 25 words)** for PowerPoint presentation.
|
| 174 |
-
|
| 175 |
-
Each piece of evidence must:
|
| 176 |
-
1. Be directly relevant to the problem background.
|
| 177 |
-
2. Be clear and concise.
|
| 178 |
-
3. Be unique, not repeating other evidence.
|
| 179 |
-
|
| 180 |
-
**Important**: Strictly output the itemized evidences ONLY.
|
| 181 |
-
"""
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
### 4. Evidence extraction from main paper text for "Research Problem"
|
| 185 |
-
RESEARCH_PROBLEM_PROMPT = """
|
| 186 |
-
You are given the **title**, briefly description of **research problem** and **introduction** of a research paper. Solely from the given introduction, extract the definition of the research problem for PowerPoint presentation, focusing on:
|
| 187 |
-
|
| 188 |
-
1. **Scope**: Define the problem’s boundaries as individual items;
|
| 189 |
-
2. **Challenges**: Identify key gaps or obstacles the research addresses as individual items;
|
| 190 |
-
3. **Assumptions**: State any assumptions guiding the research as individual items;
|
| 191 |
-
4. **Relevance*: Specify who benefits from solving the problem as individual items.
|
| 192 |
-
|
| 193 |
-
**Note**: Each item must be in one concise sentence. **Only** output "Scope", "Challenges", "Assumptions" and "Relevance".
|
| 194 |
-
"""
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
### 5. Evidence extraction from main paper text for "Objectives"
|
| 198 |
-
|
| 199 |
-
OBJECTIVE_PROMPT = """
|
| 200 |
-
You are given the **title**, **objectives** and **introduction** of a research paper. Solely from the given introduction, extract a list of **2 to 5 pieces of evidence** to support these objectives, each evidence should be described in a **minimal draft (min 10 words and max 20 words)** for PowerPoint presentation.
|
| 201 |
-
|
| 202 |
-
Each piece of evidence must:
|
| 203 |
-
1. Be directly relevant to the objectives.
|
| 204 |
-
2. Be clear and concise.
|
| 205 |
-
3. Be unique, not repeating other evidence.
|
| 206 |
-
|
| 207 |
-
**Note**: Strictly output the itemized evidences ONLY.
|
| 208 |
-
"""
|
| 209 |
-
|
| 210 |
-
### 6. Evidence extraction from main paper text for "Conclusion"
|
| 211 |
-
|
| 212 |
-
CONCLUSION_PROMT = """
|
| 213 |
-
You are given the **title**, **birief conclusion**, and **full text conclusion** and **introduction** of a research paper. From the given conclusion and introduction, extract the **conclusion** for PowerPoint presentation, ensuring it includes:
|
| 214 |
-
|
| 215 |
-
1. **Summary of key results**: Highlight the main results.
|
| 216 |
-
2. **Implications**: Explain the significance or impact of these findings.
|
| 217 |
-
3. **Future directions**: Mention any suggestions for future research or applications.
|
| 218 |
-
4. **Final takeaway**: Provide the overall takeaway message of the study.
|
| 219 |
-
|
| 220 |
-
**Note**: Only output the conclusion. Limit each point in a minimal concise draft (at least 10 words).”
|
| 221 |
-
"""
|
| 222 |
-
|
| 223 |
-
### 7. Evidence extraction from main paper text for "Experimental results" (iterative)
|
| 224 |
-
|
| 225 |
-
RESULT_PROMPT_DICT = {
|
| 226 |
-
"system_instruction": """Given the title, the main results of an experimental study, and a paragraph from a research paper, your task is to extract and summarize evidence from the paragraph that supports the 'main results'.
|
| 227 |
-
|
| 228 |
-
Follow these steps for each paragraph:
|
| 229 |
-
1. **Detect Evidence**: Check if the paragraph contains:
|
| 230 |
-
1) Any evidence supporting the main results, or
|
| 231 |
-
2) Experimental study information, including:
|
| 232 |
-
- **Dataset**: Details on datasets, preprocessing, or train/test splits.
|
| 233 |
-
- **Model Description**: Information of baselines, hyperparameters, and training.
|
| 234 |
-
- **Evaluation Metrics**: Relevant metrics like accuracy, F1 score, and their justification.
|
| 235 |
-
- **Comparative Analysis**: Comparisons with baselines, ablation studies, statistical significance.
|
| 236 |
-
- **Runtime & Scalability**: Computational complexity and scalability.
|
| 237 |
-
2. **Response**: Choose 'YES' or 'NO':
|
| 238 |
-
- If 'YES', extract and summarize the evidence or experimental details in 200 words. Ensure the summary is:
|
| 239 |
-
- Clear and concise
|
| 240 |
-
- Well-formatted for easy reading
|
| 241 |
-
- Focused on key points: dataset, model Description, evaluation metrics, comparative analysis and runtime & scalability.
|
| 242 |
-
- If 'NO', just respond with 'NO EVIDENCE'.
|
| 243 |
-
""",
|
| 244 |
-
|
| 245 |
-
"iterative_prompt": """Summarize the experimental details or evidence supporting the 'main results' in 200 words from the following paragraph (with title and content) if experiment-related information is detected. Follow these instructions:
|
| 246 |
-
|
| 247 |
-
1. List 2 to 4 itemized points.
|
| 248 |
-
2. Each point must specify the type ('Evidence' or 'Experimental Setup') and provide a minimal draft sentence of content (max 15 words).
|
| 249 |
-
|
| 250 |
-
**Note**: Only provide the itemized summary.
|
| 251 |
-
""",
|
| 252 |
-
|
| 253 |
-
"final_prompt": """Using the **title**, the **main results** of an experimental study, and a list of experiment summaries from the research paper, follow these steps to summarize the results:
|
| 254 |
-
|
| 255 |
-
1. **Evidence Summary**: prive a numbered, itemized summary of **2-3** key points. Keep each point brief and focused (only 1 sentence).
|
| 256 |
-
|
| 257 |
-
2. **Experimental Summary**: Based all 'Experimental Setup' points and provide a concise summary covering the following aspects:
|
| 258 |
-
1) **Datasets**: List only the names of all datasets or benchmarks used.
|
| 259 |
-
2) **Baselines**: List only the names of all models/algorithms used.
|
| 260 |
-
3) **Metrics**: List only the evaluation metrics used for model performance, such as accuracy, F1-score, recall, precision, AUC, etc.
|
| 261 |
-
4) **Results**: Summarize key comparisons and ablation results, focusing on the most important details.
|
| 262 |
-
|
| 263 |
-
**Note**: Only output the “Evidence Summary” and “Experimental Summary”
|
| 264 |
-
"""
|
| 265 |
-
}
|
| 266 |
-
|
| 267 |
-
## Methodology extraction
|
| 268 |
-
|
| 269 |
-
METHOD_PROMPT_DICT = {
|
| 270 |
-
"system_instruction": """Given the **title**, the **method overview**, and a paragraph of a research paper. You task is identify and extract text being relevant to 'method overview' from the given paragraph for PowerPoint presentation.
|
| 271 |
-
|
| 272 |
-
Follow these steps:
|
| 273 |
-
1. **Method Information Detection**: Check if the paragraph contains:
|
| 274 |
-
1) Any mention of the **method overview** or
|
| 275 |
-
2) Specific method details, such as:
|
| 276 |
-
- **Problem Definition**: The task, input, and expected output.
|
| 277 |
-
- **Model Architecture**: Structure, key components, and learning type.
|
| 278 |
-
- **Algorithm**: Steps of the method.
|
| 279 |
-
- **Training Process**: Training data, optimization method, and loss function.
|
| 280 |
-
2. **Response**: Choose 'YES' or 'NO':
|
| 281 |
-
- If 'YES', summarize the method details in a minimal draft with max 20 words, ensuring it is:
|
| 282 |
-
- Clear and concise
|
| 283 |
-
- Well-formatted for readability
|
| 284 |
-
- Focused on key points.
|
| 285 |
-
- If 'NO', simply respond with 'NO Information'.
|
| 286 |
-
""",
|
| 287 |
-
"iterative_prompt": """Summarize the method description in 200 words from the following paragraph (with title and content) if method-related information is found. Follow these steps:
|
| 288 |
-
|
| 289 |
-
1. List **2 to 4** method steps in numbered format..
|
| 290 |
-
2. Ensure each step is related to the **method overview**.
|
| 291 |
-
3. Keep each step clear and concise (only minimal draft with max 15 words).
|
| 292 |
-
|
| 293 |
-
**Note**: Only output the itemized method steps.
|
| 294 |
-
""",
|
| 295 |
-
|
| 296 |
-
"final_prompt": """Using **title**, **method overview**, and a list of itemized method step summary from a research paper, follow these instructions to summarize the method description::
|
| 297 |
-
|
| 298 |
-
1. Provide a numbered list of **3-6 method steps** detailing the **method overview**.
|
| 299 |
-
2. Keep each step clear and concise (only 1 sentence).
|
| 300 |
-
|
| 301 |
-
**Note**: Only output the itemized method steps.
|
| 302 |
-
"""
|
| 303 |
-
}
|
| 304 |
-
|
| 305 |
-
SLIDES_REVISION_PROMPT = """You are an expert research assistant. Revise the following research paper slides to enhance clarity and readability while preserving the original markdown structure. Keep all first-level markdown headers unchanged. Sections are separated by '{}'. Follow these guidelines:
|
| 306 |
-
|
| 307 |
-
1. Simplify language and make content more concise, especially in the outline.
|
| 308 |
-
2. Preserve the logical flow and overall structure.
|
| 309 |
-
3. Make key points and conclusions clear and easy to follow.
|
| 310 |
-
4. Use bullet points where appropriate for better clarity.
|
| 311 |
-
5. Minimize jargon to ensure accessibility for a broad academic audience.
|
| 312 |
-
|
| 313 |
-
""".format(SLIDE_SEP)
|
| 314 |
-
|
| 315 |
-
def make_api_call(model, messages, max_tokens, temperature):
|
| 316 |
-
try:
|
| 317 |
-
response = call_llama_chat(messages=messages, model=model, temperature=temperature, max_tokens=max_tokens)
|
| 318 |
-
return response
|
| 319 |
-
except Exception as e:
|
| 320 |
-
return f"Failed to generate final answer. Error: {str(e)}", {}
|
| 321 |
-
|
| 322 |
-
def convert_to_dict(input_string: str):
|
| 323 |
-
# Split the string by the delimiter (e.g., semicolon)
|
| 324 |
-
lines = input_string.strip().split('\n')
|
| 325 |
-
# Initialize an empty dictionary
|
| 326 |
-
result_dict = {}
|
| 327 |
-
# Iterate over each line
|
| 328 |
-
for line in lines:
|
| 329 |
-
# Split each line into key and value by the delimiter (e.g., colon)
|
| 330 |
-
if ':' in line:
|
| 331 |
-
key, value = line.split(':', 1) # Split only on the first occurrence
|
| 332 |
-
# Strip any whitespace and store in the dictionary
|
| 333 |
-
result_dict[key.strip()] = value.strip()
|
| 334 |
-
return result_dict
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
class Paper2Slides(object):
|
| 338 |
-
def __init__(self, paper_contents: dict, model: str, max_tokens = 512, temprature=0.1):
|
| 339 |
-
self.paper_contents = paper_contents
|
| 340 |
-
if not self.valid_paper_checking():
|
| 341 |
-
print('Not a valid paper structure, cannot generate slides')
|
| 342 |
-
exit(1)
|
| 343 |
-
self.model = MODEL_ALIAS[model]
|
| 344 |
-
self.is_rate_limitation = ('405B' in self.model) or ('70B' in self.model)
|
| 345 |
-
self.temprature = temprature
|
| 346 |
-
self.max_failure_attempt_each_step = 3
|
| 347 |
-
if '405B' in self.model:
|
| 348 |
-
self.sleep_time = 0.25
|
| 349 |
-
else:
|
| 350 |
-
self.sleep_time = 0.25
|
| 351 |
-
self.max_tokens = max_tokens
|
| 352 |
-
print('{} model is used for slides generation!\nRate limitation = {}'.format(self.model, self.is_rate_limitation))
|
| 353 |
-
self.revise_model = MODEL_ALIAS['llama3_70b']
|
| 354 |
-
|
| 355 |
-
def valid_paper_checking(self):
|
| 356 |
-
try:
|
| 357 |
-
assert 'abstract' in self.paper_contents, 'No abstract is detected'
|
| 358 |
-
assert 'title' in self.paper_contents, 'No title is detected'
|
| 359 |
-
paper_structure = self.paper_contents['structure']
|
| 360 |
-
introduction_idx_array = paper_structure['Introduction']
|
| 361 |
-
conclusion_idx_array = paper_structure['Conclusion']
|
| 362 |
-
assert introduction_idx_array[0] >=0, 'No introduction is detected'
|
| 363 |
-
assert conclusion_idx_array[0] >=0, 'No conclusion is detected'
|
| 364 |
-
except AssertionError as e:
|
| 365 |
-
print(f"AssertionError: {e}")
|
| 366 |
-
return False
|
| 367 |
-
return True
|
| 368 |
-
|
| 369 |
-
def step(self, messages):
|
| 370 |
-
result = self.run(messages=messages)
|
| 371 |
-
if 'Failed' in result:
|
| 372 |
-
time.sleep(self.sleep_time)
|
| 373 |
-
if self.is_rate_limitation:
|
| 374 |
-
print('sleep {} seconds'.format(self.sleep_time))
|
| 375 |
-
time.sleep(self.sleep_time)
|
| 376 |
-
return result
|
| 377 |
-
|
| 378 |
-
def run(self, messages):
|
| 379 |
-
for attempt in range(self.max_failure_attempt_each_step):
|
| 380 |
-
try:
|
| 381 |
-
response = make_api_call(messages=messages, model=self.model, max_tokens=self.max_tokens, temperature=self.temprature)
|
| 382 |
-
return response
|
| 383 |
-
except Exception as e:
|
| 384 |
-
if attempt == self.max_failure_attempt_each_step - 1:
|
| 385 |
-
return "Failed to generate step after {} attempts. $ERROR$: {}".format(self.max_failure_attempt_each_step, str(e))
|
| 386 |
-
else:
|
| 387 |
-
return "Failed to generate step. $ERROR$: {}".format(str(e))
|
| 388 |
-
time.sleep(2) # Wait for 1 second before retrying
|
| 389 |
-
return 'Failed to generate reasoning step.'
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
def abstract_summary(self):
|
| 393 |
-
"""
|
| 394 |
-
Extract the outline for the slides from abstract
|
| 395 |
-
"""
|
| 396 |
-
assert len(self.paper_contents['title']) > 0 and len(self.paper_contents['abstract']) > 512
|
| 397 |
-
prompt = "**title**: {}\n\n**abstract**: {}".format(self.paper_contents['title'], self.paper_contents['abstract'])
|
| 398 |
-
messages = [
|
| 399 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 400 |
-
{"role": "system", "content": ABSTRACT_SUMMARY_PROMPT},
|
| 401 |
-
{"role": "user", "content": prompt},
|
| 402 |
-
{"role": "assistant", "content": "I will extract the evidences following my instructions."}
|
| 403 |
-
]
|
| 404 |
-
abstract_summary = self.step(messages=messages)
|
| 405 |
-
try:
|
| 406 |
-
abstract_summary_dict = json.loads(abstract_summary)
|
| 407 |
-
except Exception as e:
|
| 408 |
-
abstract_summary_dict = convert_to_dict(input_string=abstract_summary)
|
| 409 |
-
|
| 410 |
-
trim_abstract_summary_dict = {}
|
| 411 |
-
for k, v in abstract_summary_dict.items():
|
| 412 |
-
trim_abstract_summary_dict[trim_string(k)] = v
|
| 413 |
-
return trim_abstract_summary_dict
|
| 414 |
-
|
| 415 |
-
def support_background(self, background: str, introduction: str):
|
| 416 |
-
"""
|
| 417 |
-
Extract support evidences for background from introduction
|
| 418 |
-
"""
|
| 419 |
-
prompt = "**title**: {}\n\n**promblem background**: {}\n\n**introduction**: {}".format(self.paper_contents['title'], background, introduction)
|
| 420 |
-
messages = [
|
| 421 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 422 |
-
{"role": "system", "content": BACKGROUD_EVIDENCE_PROMPT},
|
| 423 |
-
{"role": "user", "content": prompt},
|
| 424 |
-
{"role": "assistant", "content": "I will extract the evidences following my instructions."}
|
| 425 |
-
]
|
| 426 |
-
evidences = self.step(messages=messages)
|
| 427 |
-
# print('Background evidences = {}'.format(evidences))
|
| 428 |
-
step_num = 1
|
| 429 |
-
return evidences, step_num
|
| 430 |
-
|
| 431 |
-
def support_research_problem(self, research_problem: str, introduction: str):
|
| 432 |
-
"""
|
| 433 |
-
Extract support evidences for research problem from introduction
|
| 434 |
-
"""
|
| 435 |
-
prompt = "**title**: {}\n\n**research problem**: {}\n\n**introduction**: {}".format(self.paper_contents['title'], research_problem, introduction)
|
| 436 |
-
messages = [
|
| 437 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 438 |
-
{"role": "system", "content": RESEARCH_PROBLEM_PROMPT},
|
| 439 |
-
{"role": "user", "content": prompt},
|
| 440 |
-
{"role": "assistant", "content": "I will extract the evidences following my instructions."}
|
| 441 |
-
]
|
| 442 |
-
evidences = self.step(messages=messages)
|
| 443 |
-
step_num = 1
|
| 444 |
-
return evidences, step_num
|
| 445 |
-
|
| 446 |
-
def support_objectives(self, objectives: str, introduction: str):
|
| 447 |
-
"""
|
| 448 |
-
Extract support evidences for objectives from introduction
|
| 449 |
-
"""
|
| 450 |
-
prompt = "**title**: {}\n\n**objectives**: {}\n\n**introduction**: {}".format(self.paper_contents['title'], objectives, introduction)
|
| 451 |
-
messages = [
|
| 452 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 453 |
-
{"role": "system", "content": OBJECTIVE_PROMPT},
|
| 454 |
-
{"role": "user", "content": prompt},
|
| 455 |
-
{"role": "assistant", "content": "I will extract the evidences following my instructions."}
|
| 456 |
-
]
|
| 457 |
-
evidences = self.step(messages=messages)
|
| 458 |
-
step_num = 1
|
| 459 |
-
return evidences, step_num
|
| 460 |
-
|
| 461 |
-
def support_conclusion(self, conclusion: str, introduction: str, conclusion_text: str, step_wise=True):
|
| 462 |
-
"""
|
| 463 |
-
Expand conclusion based on full-text conclusion and introducton.
|
| 464 |
-
If step_wise = True:
|
| 465 |
-
1. Summarize introduction while focusing on conclusion part
|
| 466 |
-
2. Extract conclusion points from introduction summary and full-context conclusion.
|
| 467 |
-
"""
|
| 468 |
-
step_num = 0
|
| 469 |
-
prompt = "**title**: {}\n\n**introduction**: {}".format(self.paper_contents['title'], introduction)
|
| 470 |
-
if step_wise:
|
| 471 |
-
messages = [
|
| 472 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 473 |
-
{"role": "system", "content": "Given a **tititle** and **introduction** of a research paper, summarize and extract conclusion related information in about 200 words."},
|
| 474 |
-
{"role": "user", "content": prompt},
|
| 475 |
-
{"role": "assistant", "content": "I will extract the conclusion following my instructions."}
|
| 476 |
-
]
|
| 477 |
-
instruction_conclusion_summary = self.step(messages=messages)
|
| 478 |
-
step_num = step_num + 1
|
| 479 |
-
else:
|
| 480 |
-
instruction_conclusion_summary = introduction
|
| 481 |
-
|
| 482 |
-
prompt = "**title**: {}\n\n**brief conclusion**: {}\n\n**conclusion**: \n\n{}**introduction**: {}".format(self.paper_contents['title'], conclusion, conclusion_text, instruction_conclusion_summary)
|
| 483 |
-
messages = [
|
| 484 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 485 |
-
{"role": "system", "content": CONCLUSION_PROMT},
|
| 486 |
-
{"role": "user", "content": prompt},
|
| 487 |
-
{"role": "assistant", "content": "I will extract the conclusions following my instructions."}
|
| 488 |
-
]
|
| 489 |
-
evidences = self.step(messages=messages)
|
| 490 |
-
step_num = step_num + 1
|
| 491 |
-
return evidences, step_num
|
| 492 |
-
|
| 493 |
-
def support_experiment_results(self, main_results: str, paragraph_list: list):
|
| 494 |
-
step_num = 0
|
| 495 |
-
prompt = "**title**: {}\n\n**main results**: {}\n\n".format(self.paper_contents['title'], main_results)
|
| 496 |
-
iterative_sys_prompt = RESULT_PROMPT_DICT['iterative_prompt']
|
| 497 |
-
messages = [
|
| 498 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 499 |
-
{"role": "system", "content": RESULT_PROMPT_DICT['system_instruction']},
|
| 500 |
-
{"role": "user", "content": prompt},
|
| 501 |
-
{"role": "system", "content": iterative_sys_prompt},
|
| 502 |
-
]
|
| 503 |
-
|
| 504 |
-
follow_instruction = {"role": "assistant", "content": "I will extract the experimental information following my instructions."}
|
| 505 |
-
|
| 506 |
-
paragraph_summary_array = []
|
| 507 |
-
for para_idx in range(len(paragraph_list)):
|
| 508 |
-
para_input_prompt = "Paragraph title: {}\n\nContent: {}\n\n".format(paragraph_list[para_idx]['title'], paragraph_list[para_idx]['content'])
|
| 509 |
-
user_input = {'role': 'user', 'content': para_input_prompt}
|
| 510 |
-
messages.append(user_input)
|
| 511 |
-
messages.append(follow_instruction)
|
| 512 |
-
para_summary = self.step(messages=messages)
|
| 513 |
-
step_num = step_num + 1
|
| 514 |
-
paragraph_summary_array.append(para_summary)
|
| 515 |
-
messages.pop()
|
| 516 |
-
messages.pop()
|
| 517 |
-
|
| 518 |
-
## Experimental result summary
|
| 519 |
-
|
| 520 |
-
prompt = "**title**: {}\n\n**main results**: {}\n\n".format(self.paper_contents['title'], main_results)
|
| 521 |
-
summary_prompt = '\n'.join(['**summary** {}:\n\n{}'.format(idx+1, summary) for idx, summary in enumerate(paragraph_summary_array)])
|
| 522 |
-
input_prompt = prompt + summary_prompt
|
| 523 |
-
|
| 524 |
-
messages = [
|
| 525 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 526 |
-
{"role": "system", "content": RESULT_PROMPT_DICT['final_prompt']},
|
| 527 |
-
{"role": "user", "content": input_prompt},
|
| 528 |
-
{"role": "assistant", "content": "I will summarize the experimental results following my instructions."},
|
| 529 |
-
]
|
| 530 |
-
|
| 531 |
-
result_summary = self.step(messages=messages)
|
| 532 |
-
step_num = step_num + 1
|
| 533 |
-
return result_summary, step_num
|
| 534 |
-
|
| 535 |
-
def experiment_paragraph_extraction(self,):
|
| 536 |
-
intro_idx = self.paper_contents['structure']['Introduction'][0]
|
| 537 |
-
conclusion_idx = self.paper_contents['structure']['Conclusion'][0]
|
| 538 |
-
experiment_idx_array = self.paper_contents['structure']['Experiments']
|
| 539 |
-
if len(experiment_idx_array) == 0:
|
| 540 |
-
experiment_idx_array = [_ for _ in range(intro_idx+1, conclusion_idx)]
|
| 541 |
-
assert len(experiment_idx_array) > 0 and max(experiment_idx_array) < len(self.paper_contents['main_text'])
|
| 542 |
-
experiment_idx_array = [intro_idx] + experiment_idx_array
|
| 543 |
-
paragraphs = [self.paper_contents['main_text'][_] for _ in experiment_idx_array]
|
| 544 |
-
return paragraphs
|
| 545 |
-
|
| 546 |
-
def support_methodology(self, method_overview: str, paragraph_list: list):
|
| 547 |
-
step_num = 0
|
| 548 |
-
prompt = "**title**: {}\n\n**method overview**: {}\n\n".format(self.paper_contents['title'], method_overview)
|
| 549 |
-
iterative_sys_prompt = METHOD_PROMPT_DICT['iterative_prompt']
|
| 550 |
-
messages = [
|
| 551 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 552 |
-
{"role": "system", "content": METHOD_PROMPT_DICT['system_instruction']},
|
| 553 |
-
{"role": "user", "content": prompt},
|
| 554 |
-
{"role": "system", "content": iterative_sys_prompt},
|
| 555 |
-
]
|
| 556 |
-
|
| 557 |
-
follow_instruction = {"role": "assistant", "content": "I will extract the method information following my instructions."}
|
| 558 |
-
|
| 559 |
-
method_summary_array = []
|
| 560 |
-
for para_idx in range(len(paragraph_list)):
|
| 561 |
-
para_input_prompt = "Paragraph title: {}\n\nContent: {}\n\n".format(paragraph_list[para_idx]['title'], paragraph_list[para_idx]['content'])
|
| 562 |
-
user_input = {'role': 'user', 'content': para_input_prompt}
|
| 563 |
-
messages.append(user_input)
|
| 564 |
-
messages.append(follow_instruction)
|
| 565 |
-
method_summary = self.step(messages=messages)
|
| 566 |
-
step_num = step_num + 1
|
| 567 |
-
method_summary_array.append(method_summary)
|
| 568 |
-
messages.pop()
|
| 569 |
-
messages.pop()
|
| 570 |
-
|
| 571 |
-
## Method summary
|
| 572 |
-
prompt = "**title**: {}\n\n**method overview**: {}\n\n".format(self.paper_contents['title'], method_overview)
|
| 573 |
-
method_summary_prompt = '\n'.join(['**method summary** {}:\n\n{}'.format(idx+1, summary) for idx, summary in enumerate(method_summary_array)])
|
| 574 |
-
input_prompt = prompt + method_summary_prompt
|
| 575 |
-
|
| 576 |
-
messages = [
|
| 577 |
-
{"role": "system", "content": SCHOLAR_PROMPT},
|
| 578 |
-
{"role": "system", "content": METHOD_PROMPT_DICT['final_prompt']},
|
| 579 |
-
{"role": "user", "content": input_prompt},
|
| 580 |
-
{"role": "assistant", "content": "I will generate a step-by-step method summary following my instructions."},
|
| 581 |
-
]
|
| 582 |
-
method_summary = self.step(messages=messages)
|
| 583 |
-
step_num = step_num + 1
|
| 584 |
-
return method_summary, step_num
|
| 585 |
-
|
| 586 |
-
def method_paragraph_extraction(self,):
|
| 587 |
-
intro_idx = self.paper_contents['structure']['Introduction'][0]
|
| 588 |
-
conclusion_idx = self.paper_contents['structure']['Conclusion'][0]
|
| 589 |
-
method_idx_array = self.paper_contents['structure']['Methods']
|
| 590 |
-
if len(method_idx_array) == 0:
|
| 591 |
-
method_idx_array = [_ for _ in range(intro_idx+1, conclusion_idx)]
|
| 592 |
-
assert len(method_idx_array) > 0 and max(method_idx_array) < len(self.paper_contents['main_text'])
|
| 593 |
-
method_idx_array = [intro_idx] + method_idx_array
|
| 594 |
-
paragraphs = [self.paper_contents['main_text'][_] for _ in method_idx_array]
|
| 595 |
-
return paragraphs
|
| 596 |
-
|
| 597 |
-
def generate_slides(self, verbose=False, revision=True):
|
| 598 |
-
## Step 1: Paper content extraction
|
| 599 |
-
intro_idx = self.paper_contents['structure']['Introduction'][0]
|
| 600 |
-
introduction = self.paper_contents['main_text'][intro_idx]['content']
|
| 601 |
-
assert len(introduction) > 512, 'introduction = {}, content = {}'.format(introduction, self.paper_contents['main_text'])
|
| 602 |
-
conclusion_idx = self.paper_contents['structure']['Conclusion'][0]
|
| 603 |
-
conclusion = self.paper_contents['main_text'][conclusion_idx]['content']
|
| 604 |
-
assert len(conclusion) > 128, 'conclusion = {}, content = {}'.format(introduction, self.paper_contents['main_text'])
|
| 605 |
-
method_paragraphs = self.method_paragraph_extraction()
|
| 606 |
-
experiment_paragraphs = self.experiment_paragraph_extraction()
|
| 607 |
-
|
| 608 |
-
start_time = time.time()
|
| 609 |
-
## Step 2: slides structure extraction from abstract
|
| 610 |
-
model_call_number = 0
|
| 611 |
-
print('Slides structure generation')
|
| 612 |
-
slides = {'Title': self.paper_contents['title']}
|
| 613 |
-
outline_dict = self.abstract_summary()
|
| 614 |
-
model_call_number += 1
|
| 615 |
-
slides['Outline'] = outline_dict
|
| 616 |
-
|
| 617 |
-
print('Slides generation...')
|
| 618 |
-
background = outline_dict.get('Background', '')
|
| 619 |
-
slides['Background'], b_steps = self.support_background(background=background, introduction=introduction)
|
| 620 |
-
model_call_number += b_steps
|
| 621 |
-
|
| 622 |
-
research_problem = outline_dict.get('Research problem', '')
|
| 623 |
-
slides['Research problem'], r_steps = self.support_research_problem(research_problem=research_problem, introduction=introduction)
|
| 624 |
-
model_call_number += r_steps
|
| 625 |
-
|
| 626 |
-
objectives = outline_dict.get('Objectives', '')
|
| 627 |
-
slides['Objectives'], o_steps = self.support_objectives(objectives=objectives, introduction=introduction)
|
| 628 |
-
model_call_number += o_steps
|
| 629 |
-
|
| 630 |
-
brief_conclusion = outline_dict.get('Conclusions', '')
|
| 631 |
-
slides['Conclusions'], c_steps = self.support_conclusion(conclusion=brief_conclusion, introduction=introduction, conclusion_text=conclusion, step_wise=True)
|
| 632 |
-
model_call_number += c_steps
|
| 633 |
-
|
| 634 |
-
results = outline_dict.get('Results', '')
|
| 635 |
-
result_summary, res_steps = self.support_experiment_results(main_results=results, paragraph_list=experiment_paragraphs)
|
| 636 |
-
slides['Results'] = result_summary
|
| 637 |
-
model_call_number += res_steps
|
| 638 |
-
|
| 639 |
-
methodology = outline_dict.get('Methodology', '')
|
| 640 |
-
method_summary, m_steps = self.support_methodology(method_overview=methodology, paragraph_list=method_paragraphs)
|
| 641 |
-
model_call_number += m_steps
|
| 642 |
-
slides['Methodology'] = method_summary
|
| 643 |
-
runtime = time.time() - start_time
|
| 644 |
-
print('Slide generation takes {:.4f} seconds with {} function calls'.format(runtime, model_call_number))
|
| 645 |
-
if verbose:
|
| 646 |
-
slides_content = self.slides2markdown_v2(slides=slides)
|
| 647 |
-
if revision:
|
| 648 |
-
slides_content = self.slides_revision(slide_content=slides_content)
|
| 649 |
-
slides_array = markdown_to_slide_dicts(full_markdown=slides_content)
|
| 650 |
-
revised_slides = {k: v for d in slides_array for k, v in d.items()}
|
| 651 |
-
if verbose:
|
| 652 |
-
print('Json format:\n{}'.format(json.dumps(revised_slides, indent=4)))
|
| 653 |
-
print('\n' * 3)
|
| 654 |
-
print('paper keywords:\n{}'.format(self.paper_contents.keys()))
|
| 655 |
-
return revised_slides
|
| 656 |
-
if verbose:
|
| 657 |
-
print('Generated slides:\n{}'.format(slides_content))
|
| 658 |
-
print('Json format:\n{}'.format(json.dumps(slides, indent=4)))
|
| 659 |
-
return slides
|
| 660 |
-
|
| 661 |
-
def slides_revision(self, slide_content: str):
|
| 662 |
-
messages = [
|
| 663 |
-
{"role": "system", "content": SLIDES_REVISION_PROMPT},
|
| 664 |
-
{"role": "user", "content": slide_content},
|
| 665 |
-
{"role": "assistant", "content": "I will revise the representation slides following my instructions."}
|
| 666 |
-
]
|
| 667 |
-
print('Slides final revision')
|
| 668 |
-
revised_slides = make_api_call(model=self.revise_model, messages=messages, max_tokens=2048, temperature=self.temprature)
|
| 669 |
-
return revised_slides
|
| 670 |
-
|
| 671 |
-
def slides2markdown(self, slides: dict):
|
| 672 |
-
slides_content = ''
|
| 673 |
-
slides_content += '**Title**\n{}\n\n'.format(slides['Title'])
|
| 674 |
-
slides_content += '{}\n'.format(SLIDE_SEP)
|
| 675 |
-
slides_content += '**Outline**\n\n'
|
| 676 |
-
outline_dict = slides['Outline']
|
| 677 |
-
for sect_name, sect_content in outline_dict.items():
|
| 678 |
-
slides_content += '{}\n--\t\t{}\n\n'.format(sect_name, sect_content)
|
| 679 |
-
slides_content += '{}\n'.format(SLIDE_SEP)
|
| 680 |
-
for sect_name in outline_dict.keys():
|
| 681 |
-
if sect_name in slides:
|
| 682 |
-
slides_content += '**{}**\n\n'.format(sect_name)
|
| 683 |
-
slides_content += '{}\n\n'.format(slides[sect_name])
|
| 684 |
-
slides_content += '{}\n'.format(SLIDE_SEP)
|
| 685 |
-
return slides_content
|
| 686 |
-
|
| 687 |
-
def slides2markdown_v2(self, slides: dict, indent=0):
|
| 688 |
-
slides_content = dict_to_markdown_list(d=slides, indent=indent)
|
| 689 |
-
return slides_content
|
| 690 |
-
|
| 691 |
-
def save_to_slides(self, slides: dict, logo_path='logo.png', file_name='slides.pptx'):
|
| 692 |
-
authors = self.paper_contents.get('author', None)
|
| 693 |
-
if isinstance(authors, list):
|
| 694 |
-
authors = authors[0]
|
| 695 |
-
else:
|
| 696 |
-
authors = None
|
| 697 |
-
# print('authors', authors)
|
| 698 |
-
dict2ppt = Dict2PPT(logo_path=logo_path)
|
| 699 |
-
dict2ppt.build_slides(slide_dict=slides, authors=authors)
|
| 700 |
-
dict2ppt.save(file_name=file_name)
|
| 701 |
-
full_path = os.path.abspath(file_name)
|
| 702 |
-
return full_path
|
| 703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|