Insta360-Research commited on
Commit
4081788
·
verified ·
1 Parent(s): bc894dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -92
app.py CHANGED
@@ -1,34 +1,31 @@
1
  import gradio as gr
 
2
  import numpy as np
3
  import random
 
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
14
  else:
15
  torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
 
 
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
27
- negative_prompt,
28
  seed,
29
  randomize_seed,
30
  width,
31
- height,
32
  guidance_scale,
33
  num_inference_steps,
34
  progress=gr.Progress(track_tqdm=True),
@@ -36,119 +33,112 @@ def infer(
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
 
 
 
40
 
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
  generator=generator,
49
  ).images[0]
 
50
 
51
  return image, seed
52
 
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
 
58
  ]
59
 
 
60
  css = """
61
- #col-container {
 
 
 
 
 
 
 
 
 
 
 
62
  margin: 0 auto;
63
- max-width: 640px;
 
 
 
 
 
 
 
 
64
  }
65
  """
66
 
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
- result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
  )
91
 
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
 
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
 
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
  outputs=[result, seed],
151
  )
152
 
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
  import numpy as np
4
  import random
5
+ from PIL import Image
6
 
7
+ from src.pipeline import DiT360Pipeline
 
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
10
  if torch.cuda.is_available():
11
  torch_dtype = torch.float16
12
  else:
13
  torch_dtype = torch.float32
14
 
15
+ model_repo = "/media/nfs/tmp_data/fenghr/download/FLUX.1-dev"
16
+ lora_weights = "/media/nfs/tmp_data/fenghr/DiT360-FLUX-Panorama-Lora"
17
 
18
+ pipe = DiT360Pipeline.from_pretrained(model_repo, torch_dtype=torch_dtype).to(device)
19
+ pipe.load_lora_weights(lora_weights)
20
 
21
+ MAX_SEED = np.iinfo(np.int32).max
22
+ MAX_IMAGE_SIZE = 2048
23
 
 
24
  def infer(
25
  prompt,
 
26
  seed,
27
  randomize_seed,
28
  width,
 
29
  guidance_scale,
30
  num_inference_steps,
31
  progress=gr.Progress(track_tqdm=True),
 
33
  if randomize_seed:
34
  seed = random.randint(0, MAX_SEED)
35
 
36
+ height = width // 2
37
+ generator = torch.Generator(device=device).manual_seed(seed)
38
+
39
+ full_prompt = f"This is a panorama. The images shows {prompt.strip()}"
40
 
41
  image = pipe(
42
+ full_prompt,
43
+ width=int(width),
44
+ height=int(height),
45
  num_inference_steps=num_inference_steps,
46
+ guidance_scale=guidance_scale,
 
47
  generator=generator,
48
  ).images[0]
49
+ image.save("test.png")
50
 
51
  return image, seed
52
 
53
 
54
  examples = [
55
+ "A medieval castle stands proudly on a hilltop surrounded by autumn forests, with golden light spilling across the landscape.",
56
+ "A futuristic cityscape under a starry night sky.",
57
+ "A tranquil beach with palm trees and turquoise water at sunset.",
58
+ "A snowy mountain village under northern lights, with cozy cabins and smoke rising from chimneys.",
59
  ]
60
 
61
+
62
  css = """
63
+ #main-container {
64
+ display: flex;
65
+ flex-direction: row;
66
+ justify-content: center;
67
+ align-items: flex-start;
68
+ gap: 2rem;
69
+ margin-top: 1rem;
70
+ }
71
+
72
+ #image-panel {
73
+ flex: 2; /* 占2/3 */
74
+ max-width: 900px;
75
  margin: 0 auto;
76
+ }
77
+
78
+ #settings-panel {
79
+ flex: 1; /* 占1/3 */
80
+ max-width: 280px;
81
+ }
82
+
83
+ #prompt-box textarea {
84
+ resize: none !important; /* 去掉上下箭头 */
85
  }
86
  """
87
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ with gr.Blocks(css=css) as demo:
90
+ gr.Markdown("# 🌀 DiT360: High-Fidelity Panoramic Image Generation")
91
+ gr.Markdown("Official Gradio demo for **DiT360**, a panoramic image generation model based on hybrid training.")
92
+
93
+ with gr.Row(elem_id="main-container"):
94
+ with gr.Column(elem_id="image-panel"):
95
+ result = gr.Image(label="Generated Panorama", show_label=False, type="pil", height=360)
96
+
97
+ with gr.Column():
98
+ prompt = gr.Textbox(
99
+ elem_id="prompt-box",
100
+ placeholder="Describe your panoramic scene here...",
101
+ show_label=False,
102
+ lines=2,
103
+ container=False,
104
+ )
105
+ run_button = gr.Button("Generate", variant="primary")
106
 
107
+ gr.Examples(examples=examples, inputs=[prompt])
108
 
109
+ with gr.Column(elem_id="settings-panel"):
110
+ gr.Markdown("### ⚙️ Settings")
111
+ gr.Markdown(
112
+ "For best results, it is **not recommended** to modify `width` or `guidance scale`. "
113
+ "The height is automatically set to half the width (2:1 aspect ratio)."
 
114
  )
115
 
116
+ seed = gr.Slider(0, MAX_SEED, value=0, step=1, label="Seed")
117
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
 
 
 
 
 
118
 
119
+ width = gr.Slider(1024, MAX_IMAGE_SIZE, value=2048, step=64, label="Width (fixed 2:1)")
120
+ height_display = gr.Number(value=1024, label="Height", interactive=False)
121
 
122
+ guidance_scale = gr.Slider(0.0, 10.0, value=2.8, step=0.1, label="Guidance Scale")
123
+ num_inference_steps = gr.Slider(28, 100, value=50, step=1, label="Inference Steps")
 
 
 
 
 
 
124
 
125
+ def update_height(width):
126
+ return width // 2
 
 
 
 
 
127
 
128
+ width.change(fn=update_height, inputs=width, outputs=height_display)
 
 
 
 
 
 
 
129
 
130
+ gr.Markdown(
131
+ "💡 *Tip: Try descriptive prompts like “A mountain village at sunrise with mist over the valley.” "
132
+ "DiT360 will automatically add a trigger word.*"
133
+ )
 
 
 
134
 
 
135
  gr.on(
136
  triggers=[run_button.click, prompt.submit],
137
  fn=infer,
138
+ inputs=[prompt, seed, randomize_seed, width, guidance_scale, num_inference_steps],
 
 
 
 
 
 
 
 
 
139
  outputs=[result, seed],
140
  )
141
 
142
+
143
  if __name__ == "__main__":
144
  demo.launch()