Spaces:
Running
Running
Upload 7 files
Browse files- .huggingface.yml +6 -0
- Dockerfile +20 -0
- image_model_core.py +494 -0
- main.py +157 -0
- model_helper.py +179 -0
- requirements.txt +18 -0
- temporal_model.py +25 -0
.huggingface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sdk: docker
|
| 2 |
+
app_port: 7860
|
| 3 |
+
title: DeepGuard - Deepfake Detection API
|
| 4 |
+
emoji: 🧠
|
| 5 |
+
colorFrom: blue
|
| 6 |
+
colorTo: indigo
|
Dockerfile
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -----------------------------
|
| 2 |
+
# 🧠 DeepGuard - Python ML Backend (Docker for Hugging Face)
|
| 3 |
+
# -----------------------------
|
| 4 |
+
|
| 5 |
+
FROM python:3.10-slim
|
| 6 |
+
|
| 7 |
+
# Install dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
ffmpeg libsm6 libxext6 git && \
|
| 10 |
+
rm -rf /var/lib/apt/lists/*
|
| 11 |
+
|
| 12 |
+
WORKDIR /app
|
| 13 |
+
COPY . .
|
| 14 |
+
|
| 15 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 16 |
+
|
| 17 |
+
# Hugging Face Spaces uses port 7860
|
| 18 |
+
EXPOSE 7860
|
| 19 |
+
|
| 20 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
image_model_core.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # image_model_core.py
|
| 2 |
+
# import os
|
| 3 |
+
# import logging
|
| 4 |
+
# import warnings
|
| 5 |
+
# import numpy as np
|
| 6 |
+
# from PIL import Image
|
| 7 |
+
# import cv2
|
| 8 |
+
# import torch
|
| 9 |
+
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 10 |
+
|
| 11 |
+
# warnings.filterwarnings("ignore")
|
| 12 |
+
# logger = logging.getLogger(__name__)
|
| 13 |
+
# logger.setLevel(logging.INFO)
|
| 14 |
+
|
| 15 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
# logger.info(f"Using device: {device}")
|
| 17 |
+
|
| 18 |
+
# # --- Face detector: prefer RetinaFace if installed, otherwise fallback to MTCNN ---
|
| 19 |
+
# USE_RETINA = False
|
| 20 |
+
# try:
|
| 21 |
+
# # retina-face package (pip install retina-face)
|
| 22 |
+
# from retinaface import RetinaFace
|
| 23 |
+
# USE_RETINA = True
|
| 24 |
+
# logger.info("Using RetinaFace for face detection (retina-face).")
|
| 25 |
+
# except Exception:
|
| 26 |
+
# try:
|
| 27 |
+
# # alternative retinaface implementation
|
| 28 |
+
# from retinaface_pytorch import RetinaFaceDetector # optional naming
|
| 29 |
+
# USE_RETINA = True
|
| 30 |
+
# logger.info("Using retinaface-pytorch for face detection.")
|
| 31 |
+
# except Exception:
|
| 32 |
+
# USE_RETINA = False
|
| 33 |
+
|
| 34 |
+
# if not USE_RETINA:
|
| 35 |
+
# try:
|
| 36 |
+
# from facenet_pytorch import MTCNN
|
| 37 |
+
# mtcnn = MTCNN(keep_all=False, device=device)
|
| 38 |
+
# logger.info("RetinaFace not available — falling back to MTCNN.")
|
| 39 |
+
# except Exception:
|
| 40 |
+
# mtcnn = None
|
| 41 |
+
# logger.warning("No RetinaFace or MTCNN available — face detection will be very basic.")
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# # ---------- Models ----------
|
| 45 |
+
# # Replace the invalid non-existing model id with a working prithiv model or other public deepfake models.
|
| 46 |
+
# MODEL_PATHS = [
|
| 47 |
+
# # balanced ensemble: CNN-style deepfake (prithiv), ViT-based and BEiT-based
|
| 48 |
+
# "prithivMLmods/deepfake-detector-model-v1", # (public prithiv variant) — fallback to a valid prithiv model
|
| 49 |
+
# "Wvolf/ViT_Deepfake_Detection",
|
| 50 |
+
# "microsoft/beit-large-patch16-224-pt22k-ft22k"
|
| 51 |
+
# ]
|
| 52 |
+
|
| 53 |
+
# models = []
|
| 54 |
+
# processors = []
|
| 55 |
+
# for mid in MODEL_PATHS:
|
| 56 |
+
# try:
|
| 57 |
+
# proc = AutoImageProcessor.from_pretrained(mid)
|
| 58 |
+
# model = AutoModelForImageClassification.from_pretrained(mid).to(device)
|
| 59 |
+
# model.eval()
|
| 60 |
+
# models.append(model)
|
| 61 |
+
# processors.append(proc)
|
| 62 |
+
# logger.info(f"✅ Loaded image model: {mid}")
|
| 63 |
+
# except Exception as e:
|
| 64 |
+
# logger.warning(f"⚠️ Failed to load model {mid}: {e}")
|
| 65 |
+
|
| 66 |
+
# if len(models) == 0:
|
| 67 |
+
# logger.error("No models could be loaded. Please check MODEL_PATHS and internet / HF auth.")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# # ---------- Heuristics (optimized) ----------
|
| 71 |
+
# def _frequency_artifact_score(face_bgr):
|
| 72 |
+
# # faster but stable frequency heuristic
|
| 73 |
+
# gray = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2GRAY)
|
| 74 |
+
# # downsample to small size for FFT to speed up
|
| 75 |
+
# small = cv2.resize(gray, (64, 64), interpolation=cv2.INTER_LINEAR)
|
| 76 |
+
# f = np.fft.fft2(small)
|
| 77 |
+
# fshift = np.fft.fftshift(f)
|
| 78 |
+
# mag = np.log(np.abs(fshift) + 1)
|
| 79 |
+
# high_freq = np.mean(mag[32:, 32:])
|
| 80 |
+
# return float(np.clip(high_freq / 6.0, 0, 1))
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# def _illumination_consistency(face_bgr):
|
| 84 |
+
# lab = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2LAB)
|
| 85 |
+
# l_std = np.std(lab[:, :, 0])
|
| 86 |
+
# return float(np.clip(l_std / 64.0, 0, 1))
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# def _edge_density(face_bgr):
|
| 90 |
+
# gray = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2GRAY)
|
| 91 |
+
# edges = cv2.Canny(gray, 80, 160)
|
| 92 |
+
# return float(np.clip(np.mean(edges) / 255.0 * 2.0, 0, 1))
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# def aggregate_heuristics(face_bgr):
|
| 96 |
+
# # compute all using the same precomputed gray if needed
|
| 97 |
+
# try:
|
| 98 |
+
# return float(np.mean([
|
| 99 |
+
# _frequency_artifact_score(face_bgr),
|
| 100 |
+
# _illumination_consistency(face_bgr),
|
| 101 |
+
# _edge_density(face_bgr)
|
| 102 |
+
# ]))
|
| 103 |
+
# except Exception as e:
|
| 104 |
+
# logger.warning(f"Heuristic error: {e}")
|
| 105 |
+
# return 0.0
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# # ---------- Face extraction (robust) ----------
|
| 109 |
+
# def _detect_face_boxes(img_bgr):
|
| 110 |
+
# """
|
| 111 |
+
# Return list of bounding boxes in x1,y1,x2,y2 format.
|
| 112 |
+
# """
|
| 113 |
+
# h, w = img_bgr.shape[:2]
|
| 114 |
+
# boxes = []
|
| 115 |
+
# if USE_RETINA:
|
| 116 |
+
# try:
|
| 117 |
+
# # retinaface returns dict or list depending on implementation
|
| 118 |
+
# dets = RetinaFace.detect_faces(img_bgr, align=False)
|
| 119 |
+
# # for many retinaface wrappers dets is dict with keys being faceIDs
|
| 120 |
+
# if isinstance(dets, dict):
|
| 121 |
+
# for k, v in dets.items():
|
| 122 |
+
# bb = v.get("facial_area") or v.get("bbox") or None
|
| 123 |
+
# if bb:
|
| 124 |
+
# x1, y1, x2, y2 = bb
|
| 125 |
+
# boxes.append([max(0, int(x1)), max(0, int(y1)), min(w, int(x2)), min(h, int(y2))])
|
| 126 |
+
# elif isinstance(dets, list):
|
| 127 |
+
# for d in dets:
|
| 128 |
+
# if len(d) >= 4:
|
| 129 |
+
# x1, y1, x2, y2 = d[:4]
|
| 130 |
+
# boxes.append([max(0, int(x1)), max(0, int(y1)), min(w, int(x2)), min(h, int(y2))])
|
| 131 |
+
# except Exception:
|
| 132 |
+
# # some retina wrappers expect RGB; attempt conversion fallback
|
| 133 |
+
# try:
|
| 134 |
+
# dets = RetinaFace.detect_faces(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB), align=False)
|
| 135 |
+
# if isinstance(dets, dict):
|
| 136 |
+
# for k, v in dets.items():
|
| 137 |
+
# bb = v.get("facial_area") or v.get("bbox") or None
|
| 138 |
+
# if bb:
|
| 139 |
+
# x1, y1, x2, y2 = bb
|
| 140 |
+
# boxes.append([max(0, int(x1)), max(0, int(y1)), min(w, int(x2)), min(h, int(y2))])
|
| 141 |
+
# except Exception as ex:
|
| 142 |
+
# logger.warning(f"RetinaFace detect exception: {ex}")
|
| 143 |
+
# else:
|
| 144 |
+
# if mtcnn is not None:
|
| 145 |
+
# try:
|
| 146 |
+
# # mtcnn.detect expects RGB
|
| 147 |
+
# boxes_mt, _ = mtcnn.detect(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB))
|
| 148 |
+
# if boxes_mt is not None:
|
| 149 |
+
# for b in boxes_mt:
|
| 150 |
+
# x1, y1, x2, y2 = [int(max(0, val)) for val in b]
|
| 151 |
+
# boxes.append([x1, y1, x2, y2])
|
| 152 |
+
# except Exception as e:
|
| 153 |
+
# logger.warning(f"MTCNN detect failure: {e}")
|
| 154 |
+
# # clamp and filter
|
| 155 |
+
# clean_boxes = []
|
| 156 |
+
# for (x1, y1, x2, y2) in boxes:
|
| 157 |
+
# if x2 - x1 < 10 or y2 - y1 < 10: # tiny box
|
| 158 |
+
# continue
|
| 159 |
+
# if x1 < 0 or y1 < 0 or x2 <= x1 or y2 <= y1:
|
| 160 |
+
# continue
|
| 161 |
+
# clean_boxes.append([x1, y1, x2, y2])
|
| 162 |
+
# return clean_boxes
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# def _extract_face_region(img_bgr):
|
| 166 |
+
# boxes = _detect_face_boxes(img_bgr)
|
| 167 |
+
# if not boxes:
|
| 168 |
+
# return None
|
| 169 |
+
# # pick the largest box
|
| 170 |
+
# boxes = sorted(boxes, key=lambda b: (b[2] - b[0]) * (b[3] - b[1]), reverse=True)
|
| 171 |
+
# x1, y1, x2, y2 = boxes[0]
|
| 172 |
+
# # safe clamp
|
| 173 |
+
# h, w = img_bgr.shape[:2]
|
| 174 |
+
# x1, y1, x2, y2 = max(0, x1), max(0, y1), min(w, x2), min(h, y2)
|
| 175 |
+
# face = img_bgr[y1:y2, x1:x2]
|
| 176 |
+
# if face is None or face.size == 0:
|
| 177 |
+
# return None
|
| 178 |
+
# face = cv2.resize(face, (224, 224), interpolation=cv2.INTER_AREA)
|
| 179 |
+
# return face
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# # ---------- Batched inference helper ----------
|
| 183 |
+
# def _batched_model_predict(pil_images, batch_size=8):
|
| 184 |
+
# """
|
| 185 |
+
# pil_images: list[PIL.Image]
|
| 186 |
+
# returns: list of per-image composite scores between 0..1 where higher means more "fake"
|
| 187 |
+
# """
|
| 188 |
+
# if len(models) == 0:
|
| 189 |
+
# return [0.0] * len(pil_images)
|
| 190 |
+
|
| 191 |
+
# # For each model, produce per-image probabilities; then ensemble across models
|
| 192 |
+
# all_model_scores = [] # shape: (n_models, n_images)
|
| 193 |
+
# for model, proc in zip(models, processors):
|
| 194 |
+
# try:
|
| 195 |
+
# inputs = proc(images=pil_images, return_tensors="pt", padding=True).to(device)
|
| 196 |
+
# # If inputs are large, split by batch
|
| 197 |
+
# logits = None
|
| 198 |
+
# with torch.no_grad():
|
| 199 |
+
# logits = model(**inputs).logits # (batch, classes)
|
| 200 |
+
# probs = torch.nn.functional.softmax(logits, dim=-1).cpu().numpy()
|
| 201 |
+
# # pick predicted class confidence mapped to "fakeness"
|
| 202 |
+
# id2label = model.config.id2label
|
| 203 |
+
# per_img_scores = []
|
| 204 |
+
# for p in probs:
|
| 205 |
+
# label_idx = int(np.argmax(p))
|
| 206 |
+
# label = str(id2label.get(str(label_idx), id2label.get(label_idx, "unknown"))).lower()
|
| 207 |
+
# is_fake = any(k in label for k in ["fake", "manipulated", "forged", "edited"])
|
| 208 |
+
# conf = float(p[label_idx])
|
| 209 |
+
# score = conf if is_fake else 1.0 - conf
|
| 210 |
+
# per_img_scores.append(score)
|
| 211 |
+
# all_model_scores.append(per_img_scores)
|
| 212 |
+
# except Exception as e:
|
| 213 |
+
# logger.warning(f"Model batch predict failed: {e}")
|
| 214 |
+
# # fallback: zeros
|
| 215 |
+
# all_model_scores.append([0.0] * len(pil_images))
|
| 216 |
+
|
| 217 |
+
# # ensemble across models
|
| 218 |
+
# all_model_scores = np.array(all_model_scores) # shape (m, n)
|
| 219 |
+
# # weights proportional to number of models loaded (keep default relative weights)
|
| 220 |
+
# base_weights = np.array([0.4, 0.35, 0.25])[:all_model_scores.shape[0]]
|
| 221 |
+
# if base_weights.sum() == 0:
|
| 222 |
+
# base_weights = np.ones(all_model_scores.shape[0]) / all_model_scores.shape[0]
|
| 223 |
+
# else:
|
| 224 |
+
# base_weights = base_weights / base_weights.sum()
|
| 225 |
+
# weighted = np.dot(base_weights, all_model_scores) # size n
|
| 226 |
+
# return weighted.tolist()
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# # ---------- Public API ----------
|
| 230 |
+
# def predict_image(image_path):
|
| 231 |
+
# """
|
| 232 |
+
# Main image-level API (synchronous)
|
| 233 |
+
# Returns dict compatible with your existing responses:
|
| 234 |
+
# { "top": {"label": "fake"/"real", "score": 0.xx}, "model_score": ..., "heuristic_score": ..., "source":"image" }
|
| 235 |
+
# """
|
| 236 |
+
# try:
|
| 237 |
+
# img_bgr = cv2.imread(image_path)
|
| 238 |
+
# if img_bgr is None:
|
| 239 |
+
# return {"error": "cannot_read_image"}
|
| 240 |
+
|
| 241 |
+
# face = _extract_face_region(img_bgr)
|
| 242 |
+
# if face is None:
|
| 243 |
+
# # fallback: resize whole image
|
| 244 |
+
# try:
|
| 245 |
+
# face = cv2.resize(img_bgr, (224, 224), interpolation=cv2.INTER_AREA)
|
| 246 |
+
# except Exception:
|
| 247 |
+
# return {"error": "no_face_detected"}
|
| 248 |
+
|
| 249 |
+
# pil = Image.fromarray(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
|
| 250 |
+
# model_scores = _batched_model_predict([pil]) # returns list len 1
|
| 251 |
+
# model_score = float(model_scores[0])
|
| 252 |
+
# heuristic_score = aggregate_heuristics(face)
|
| 253 |
+
# final = float(np.clip(0.85 * model_score + 0.15 * heuristic_score, 0, 1))
|
| 254 |
+
# label = "fake" if final > 0.55 else "real"
|
| 255 |
+
|
| 256 |
+
# return {
|
| 257 |
+
# "top": {"label": label, "score": round(final, 4)},
|
| 258 |
+
# "model_score": round(model_score, 4),
|
| 259 |
+
# "heuristic_score": round(heuristic_score, 4),
|
| 260 |
+
# "source": "image"
|
| 261 |
+
# }
|
| 262 |
+
# except Exception as e:
|
| 263 |
+
# logger.exception("predict_image failed")
|
| 264 |
+
# return {"error": str(e)}
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# ############################3333333333333333333333333333333333333333333333333#############################################################################################################################################333333333333333333
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
# image_model_core.py
|
| 271 |
+
"""
|
| 272 |
+
Image detection core (accuracy-first).
|
| 273 |
+
- Uses RetinaFace preferred, otherwise MTCNN.
|
| 274 |
+
- Runs batched inference (but for single image it's small).
|
| 275 |
+
- Uses more model weight on model outputs (0.85) and heuristics 0.15.
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
import os
|
| 279 |
+
import logging
|
| 280 |
+
import warnings
|
| 281 |
+
import numpy as np
|
| 282 |
+
from PIL import Image
|
| 283 |
+
import cv2
|
| 284 |
+
import torch
|
| 285 |
+
from dotenv import load_dotenv
|
| 286 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
warnings.filterwarnings("ignore")
|
| 290 |
+
logger = logging.getLogger(__name__)
|
| 291 |
+
logger.setLevel(logging.INFO)
|
| 292 |
+
|
| 293 |
+
load_dotenv()
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 297 |
+
logger.info(f"Device for image_model_core: {device}")
|
| 298 |
+
|
| 299 |
+
# Prefer RetinaFace, else MTCNN (same approach as model_helper)
|
| 300 |
+
USE_RETINA = False
|
| 301 |
+
try:
|
| 302 |
+
from retinaface import RetinaFace
|
| 303 |
+
USE_RETINA = True
|
| 304 |
+
logger.info("Using RetinaFace for image face detection.")
|
| 305 |
+
except Exception:
|
| 306 |
+
try:
|
| 307 |
+
from facenet_pytorch import MTCNN
|
| 308 |
+
mtcnn = MTCNN(keep_all=False, device=device)
|
| 309 |
+
logger.info("RetinaFace not available — falling back to MTCNN for image pipeline.")
|
| 310 |
+
except Exception:
|
| 311 |
+
mtcnn = None
|
| 312 |
+
logger.warning("No RetinaFace or MTCNN available — image face detection will be basic.")
|
| 313 |
+
|
| 314 |
+
# models (same ensemble)
|
| 315 |
+
MODEL_PATHS = [
|
| 316 |
+
|
| 317 |
+
os.getenv("IMAGE_MODEL_1"),
|
| 318 |
+
os.getenv("IMAGE_MODEL_2"),
|
| 319 |
+
os.getenv("IMAGE_MODEL_3")
|
| 320 |
+
]
|
| 321 |
+
|
| 322 |
+
models = []
|
| 323 |
+
processors = []
|
| 324 |
+
def load_image_models():
|
| 325 |
+
global models, processors
|
| 326 |
+
models = []
|
| 327 |
+
processors = []
|
| 328 |
+
for mid in MODEL_PATHS:
|
| 329 |
+
try:
|
| 330 |
+
proc = AutoImageProcessor.from_pretrained(mid, trust_remote_code=False)
|
| 331 |
+
model = AutoModelForImageClassification.from_pretrained(mid).to(device)
|
| 332 |
+
model.eval()
|
| 333 |
+
models.append(model)
|
| 334 |
+
processors.append(proc)
|
| 335 |
+
logger.info(f"✅ Loaded image model: {mid.split('/')[-1]}")
|
| 336 |
+
except Exception as e:
|
| 337 |
+
logger.warning(f"⚠️ Failed to load model {mid}: {e}")
|
| 338 |
+
|
| 339 |
+
load_image_models()
|
| 340 |
+
if len(models) == 0:
|
| 341 |
+
logger.error("No image models loaded. Image detection disabled until models are present.")
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
# --------------- heuristics ----------------
|
| 345 |
+
def _frequency_artifact_score(face_bgr):
|
| 346 |
+
gray = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2GRAY)
|
| 347 |
+
small = cv2.resize(gray, (64,64), interpolation=cv2.INTER_LINEAR)
|
| 348 |
+
f = np.fft.fft2(small)
|
| 349 |
+
fshift = np.fft.fftshift(f)
|
| 350 |
+
mag = np.log(np.abs(fshift) + 1)
|
| 351 |
+
high_freq = np.mean(mag[32:, 32:]) if mag.shape[0] > 32 else np.mean(mag)
|
| 352 |
+
return float(np.clip(high_freq / 6.0, 0, 1))
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _illumination_consistency(face_bgr):
|
| 356 |
+
lab = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2LAB)
|
| 357 |
+
l_std = np.std(lab[:,:,0])
|
| 358 |
+
return float(np.clip(l_std / 64.0, 0, 1))
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _edge_density(face_bgr):
|
| 362 |
+
gray = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2GRAY)
|
| 363 |
+
edges = cv2.Canny(gray, 80, 160)
|
| 364 |
+
return float(np.clip(np.mean(edges) / 255.0 * 2.0, 0, 1))
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def aggregate_heuristics(face_bgr):
|
| 368 |
+
try:
|
| 369 |
+
return float(np.mean([_frequency_artifact_score(face_bgr),
|
| 370 |
+
_illumination_consistency(face_bgr),
|
| 371 |
+
_edge_density(face_bgr)]))
|
| 372 |
+
except Exception as e:
|
| 373 |
+
logger.warning(f"Heuristic error: {e}")
|
| 374 |
+
return 0.0
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
# ---------------- face extraction -------------
|
| 378 |
+
def _detect_face_boxes(img_bgr):
|
| 379 |
+
h,w = img_bgr.shape[:2]
|
| 380 |
+
boxes = []
|
| 381 |
+
if USE_RETINA:
|
| 382 |
+
try:
|
| 383 |
+
dets = RetinaFace.detect_faces(img_bgr, align=False)
|
| 384 |
+
if isinstance(dets, dict):
|
| 385 |
+
for k,v in dets.items():
|
| 386 |
+
bb = v.get("facial_area") or v.get("bbox")
|
| 387 |
+
if bb:
|
| 388 |
+
x1,y1,x2,y2 = bb
|
| 389 |
+
boxes.append([max(0,int(x1)), max(0,int(y1)), min(w,int(x2)), min(h,int(y2))])
|
| 390 |
+
elif isinstance(dets, list):
|
| 391 |
+
for d in dets:
|
| 392 |
+
if len(d) >= 4:
|
| 393 |
+
x1,y1,x2,y2 = d[:4]
|
| 394 |
+
boxes.append([max(0,int(x1)), max(0,int(y1)), min(w,int(x2)), min(h,int(y2))])
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.debug(f"RetinaFace detection error (image): {e}")
|
| 397 |
+
elif 'mtcnn' in globals() and mtcnn is not None:
|
| 398 |
+
try:
|
| 399 |
+
boxes_mt, _ = mtcnn.detect(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB))
|
| 400 |
+
if boxes_mt is not None:
|
| 401 |
+
for b in boxes_mt:
|
| 402 |
+
x1,y1,x2,y2 = [int(max(0,val)) for val in b]
|
| 403 |
+
boxes.append([x1,y1,x2,y2])
|
| 404 |
+
except Exception as e:
|
| 405 |
+
logger.debug(f"MTCNN detection error (image): {e}")
|
| 406 |
+
cleaned = []
|
| 407 |
+
for x1,y1,x2,y2 in boxes:
|
| 408 |
+
if x2-x1 < 12 or y2-y1 < 12: continue
|
| 409 |
+
if x1<0 or y1<0 or x2<=x1 or y2<=y1: continue
|
| 410 |
+
cleaned.append([x1,y1,x2,y2])
|
| 411 |
+
return cleaned
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def _extract_face_region(img_bgr):
|
| 415 |
+
boxes = _detect_face_boxes(img_bgr)
|
| 416 |
+
if not boxes:
|
| 417 |
+
return None
|
| 418 |
+
boxes = sorted(boxes, key=lambda b: (b[2]-b[0])*(b[3]-b[1]), reverse=True)
|
| 419 |
+
x1,y1,x2,y2 = boxes[0]
|
| 420 |
+
h,w = img_bgr.shape[:2]
|
| 421 |
+
x1,y1,x2,y2 = max(0,x1), max(0,y1), min(w,x2), min(h,y2)
|
| 422 |
+
face = img_bgr[y1:y2, x1:x2]
|
| 423 |
+
if face is None or face.size == 0: return None
|
| 424 |
+
face = cv2.resize(face, (224,224), interpolation=cv2.INTER_AREA)
|
| 425 |
+
return face
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
# ---------------- batched inference helper -------------
|
| 429 |
+
def _batched_model_predict(pil_images):
|
| 430 |
+
if len(models) == 0:
|
| 431 |
+
return [0.0] * len(pil_images)
|
| 432 |
+
per_model_outputs = []
|
| 433 |
+
for model, proc in zip(models, processors):
|
| 434 |
+
try:
|
| 435 |
+
inputs = proc(images=pil_images, return_tensors="pt", padding=True).to(device)
|
| 436 |
+
with torch.no_grad():
|
| 437 |
+
if device.type == "cuda":
|
| 438 |
+
with torch.cuda.amp.autocast():
|
| 439 |
+
logits = model(**inputs).logits
|
| 440 |
+
else:
|
| 441 |
+
logits = model(**inputs).logits
|
| 442 |
+
probs = torch.nn.functional.softmax(logits, dim=-1).cpu().numpy()
|
| 443 |
+
id2label = getattr(model.config, "id2label", {}) or {}
|
| 444 |
+
out_scores = []
|
| 445 |
+
for p in probs:
|
| 446 |
+
idx = int(np.argmax(p))
|
| 447 |
+
label = str(id2label.get(str(idx), id2label.get(idx, "unknown"))).lower()
|
| 448 |
+
is_fake = any(k in label for k in ["fake","manipulated","forged","edited"])
|
| 449 |
+
conf = float(p[idx])
|
| 450 |
+
out_scores.append(conf if is_fake else 1.0 - conf)
|
| 451 |
+
per_model_outputs.append(out_scores)
|
| 452 |
+
except Exception as e:
|
| 453 |
+
logger.warning(f"Model batch predict failed (image): {e}")
|
| 454 |
+
per_model_outputs.append([0.0]*len(pil_images))
|
| 455 |
+
|
| 456 |
+
all_scores = np.array(per_model_outputs)
|
| 457 |
+
base_weights = np.array([0.4, 0.35, 0.25])[:all_scores.shape[0]]
|
| 458 |
+
if base_weights.sum() == 0:
|
| 459 |
+
base_weights = np.ones(all_scores.shape[0]) / all_scores.shape[0]
|
| 460 |
+
else:
|
| 461 |
+
base_weights = base_weights / base_weights.sum()
|
| 462 |
+
weighted = np.dot(base_weights, all_scores)
|
| 463 |
+
return weighted.tolist()
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
# ---------------- public API ----------------
|
| 467 |
+
def predict_image(image_path):
|
| 468 |
+
try:
|
| 469 |
+
img_bgr = cv2.imread(image_path)
|
| 470 |
+
if img_bgr is None:
|
| 471 |
+
return {"error": "cannot_read_image"}
|
| 472 |
+
face = _extract_face_region(img_bgr)
|
| 473 |
+
if face is None:
|
| 474 |
+
# fallback: whole image attempted
|
| 475 |
+
try:
|
| 476 |
+
face = cv2.resize(img_bgr, (224,224), interpolation=cv2.INTER_AREA)
|
| 477 |
+
except Exception:
|
| 478 |
+
return {"error": "no_face_detected"}
|
| 479 |
+
|
| 480 |
+
pil = Image.fromarray(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
|
| 481 |
+
model_scores = _batched_model_predict([pil])
|
| 482 |
+
model_score = float(model_scores[0])
|
| 483 |
+
heuristic_score = aggregate_heuristics(face)
|
| 484 |
+
final = float(np.clip(0.85 * model_score + 0.15 * heuristic_score, 0, 1))
|
| 485 |
+
label = "fake" if final > 0.55 else "real"
|
| 486 |
+
return {
|
| 487 |
+
"top": {"label": label, "score": round(final, 4)},
|
| 488 |
+
"model_score": round(model_score, 4),
|
| 489 |
+
"heuristic_score": round(heuristic_score, 4),
|
| 490 |
+
"source": "image"
|
| 491 |
+
}
|
| 492 |
+
except Exception as e:
|
| 493 |
+
logger.exception("predict_image failed")
|
| 494 |
+
return {"error": str(e)}
|
main.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
#***********************************************************************************************************************************************
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI, UploadFile, File
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
import uvicorn, tempfile, cv2, numpy as np, logging
|
| 9 |
+
from model_helper import ensemble_predict_from_path
|
| 10 |
+
from image_model_core import predict_image
|
| 11 |
+
|
| 12 |
+
# ------------------------------
|
| 13 |
+
# ⚙️ App Setup
|
| 14 |
+
# ------------------------------
|
| 15 |
+
app = FastAPI(title="Deepfake Detection API", version="2.0")
|
| 16 |
+
|
| 17 |
+
app.add_middleware(
|
| 18 |
+
CORSMiddleware,
|
| 19 |
+
allow_origins=["*"],
|
| 20 |
+
allow_credentials=True,
|
| 21 |
+
allow_methods=["*"],
|
| 22 |
+
allow_headers=["*"],
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# ------------------------------
|
| 26 |
+
# 🪵 Logging
|
| 27 |
+
# ------------------------------
|
| 28 |
+
logging.basicConfig(
|
| 29 |
+
level=logging.INFO,
|
| 30 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 31 |
+
)
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
# ------------------------------
|
| 35 |
+
# 🧩 Heuristic functions (for videos)
|
| 36 |
+
# ------------------------------
|
| 37 |
+
def compute_fft_artifact_score(frame):
|
| 38 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 39 |
+
f = np.fft.fft2(gray)
|
| 40 |
+
fshift = np.fft.fftshift(f)
|
| 41 |
+
magnitude = 20 * np.log(np.abs(fshift) + 1)
|
| 42 |
+
high_freq = np.mean(magnitude[-20:, -20:])
|
| 43 |
+
return float(min(high_freq / 255.0, 1.0))
|
| 44 |
+
|
| 45 |
+
def color_inconsistency_score(frame):
|
| 46 |
+
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
| 47 |
+
h_std = np.std(hsv[:, :, 0])
|
| 48 |
+
return float(min(h_std / 90.0, 1.0))
|
| 49 |
+
|
| 50 |
+
def edge_warp_score(frame):
|
| 51 |
+
edges = cv2.Canny(frame, 100, 200)
|
| 52 |
+
return float(min(np.mean(edges) / 255.0, 1.0))
|
| 53 |
+
|
| 54 |
+
def aggregate_heuristics(frame):
|
| 55 |
+
fft_score = compute_fft_artifact_score(frame)
|
| 56 |
+
color_score = color_inconsistency_score(frame)
|
| 57 |
+
warp_score = edge_warp_score(frame)
|
| 58 |
+
return float(np.mean([fft_score, color_score, warp_score]))
|
| 59 |
+
|
| 60 |
+
# ------------------------------
|
| 61 |
+
# 🎥 Video Analysis Endpoint
|
| 62 |
+
# ------------------------------
|
| 63 |
+
@app.post("/analyze")
|
| 64 |
+
async def analyze_video(file: UploadFile = File(...)):
|
| 65 |
+
logger.info(f"🎞️ Received video file: {file.filename}")
|
| 66 |
+
|
| 67 |
+
# Save uploaded video temporarily
|
| 68 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
| 69 |
+
tmp.write(await file.read())
|
| 70 |
+
video_path = tmp.name
|
| 71 |
+
|
| 72 |
+
cap = cv2.VideoCapture(video_path)
|
| 73 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 74 |
+
if frame_count == 0:
|
| 75 |
+
return {"error": "Unable to read video"}
|
| 76 |
+
|
| 77 |
+
sample_frames = max(1, frame_count // 10)
|
| 78 |
+
model_scores, heuristic_scores = [], []
|
| 79 |
+
|
| 80 |
+
for i in range(0, frame_count, sample_frames):
|
| 81 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 82 |
+
ret, frame = cap.read()
|
| 83 |
+
if not ret:
|
| 84 |
+
continue
|
| 85 |
+
|
| 86 |
+
# --- Heuristic ---
|
| 87 |
+
h_score = aggregate_heuristics(frame)
|
| 88 |
+
heuristic_scores.append(h_score)
|
| 89 |
+
|
| 90 |
+
# --- Model ensemble prediction ---
|
| 91 |
+
temp_img_path = tempfile.NamedTemporaryFile(suffix=".jpg", delete=False).name
|
| 92 |
+
cv2.imwrite(temp_img_path, frame)
|
| 93 |
+
preds = ensemble_predict_from_path(temp_img_path)
|
| 94 |
+
fake_score = preds["top"]["label"].lower() == "fake"
|
| 95 |
+
model_scores.append(float(preds["top"]["score"] if fake_score else 1 - preds["top"]["score"]))
|
| 96 |
+
|
| 97 |
+
cap.release()
|
| 98 |
+
|
| 99 |
+
final_model_score = float(np.mean(model_scores) if model_scores else 0.0)
|
| 100 |
+
final_heuristic_score = float(np.mean(heuristic_scores) if heuristic_scores else 0.0)
|
| 101 |
+
final_score = 0.7 * final_model_score + 0.3 * final_heuristic_score
|
| 102 |
+
is_fake = bool(final_score > 0.5)
|
| 103 |
+
|
| 104 |
+
logger.info(f"✅ Video analyzed: score={final_score:.4f}, fake={is_fake}")
|
| 105 |
+
|
| 106 |
+
return {
|
| 107 |
+
"source": "video",
|
| 108 |
+
"model_score": round(final_model_score, 4),
|
| 109 |
+
"heuristic_score": round(final_heuristic_score, 4),
|
| 110 |
+
"final_score": round(final_score, 4),
|
| 111 |
+
"is_deepfake": is_fake
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
# ------------------------------
|
| 115 |
+
# 🖼️ Image Analysis Endpoint
|
| 116 |
+
# ------------------------------
|
| 117 |
+
@app.post("/predict/image")
|
| 118 |
+
async def analyze_image(file: UploadFile = File(...)):
|
| 119 |
+
logger.info(f"🖼️ Received image file: {file.filename}")
|
| 120 |
+
try:
|
| 121 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
| 122 |
+
tmp.write(await file.read())
|
| 123 |
+
image_path = tmp.name
|
| 124 |
+
|
| 125 |
+
# 🔍 Run prediction
|
| 126 |
+
preds = predict_image(image_path)
|
| 127 |
+
if "error" in preds:
|
| 128 |
+
return {"error": preds["error"]}
|
| 129 |
+
|
| 130 |
+
model_score = preds.get("model_score", 0.0)
|
| 131 |
+
heuristic_score = preds.get("heuristic_score", 0.0)
|
| 132 |
+
final_score = preds["top"]["score"]
|
| 133 |
+
is_fake = preds["top"]["label"].lower() == "fake"
|
| 134 |
+
|
| 135 |
+
logger.info(f"✅ Image analyzed: score={final_score:.4f}, fake={is_fake}")
|
| 136 |
+
|
| 137 |
+
return {
|
| 138 |
+
"source": "image",
|
| 139 |
+
"model_score": round(model_score, 4),
|
| 140 |
+
"heuristic_score": round(heuristic_score, 4),
|
| 141 |
+
"final_score": round(final_score, 4),
|
| 142 |
+
"is_deepfake": is_fake
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logger.exception("❌ Error during image analysis")
|
| 147 |
+
return {"error": str(e)}
|
| 148 |
+
|
| 149 |
+
# ------------------------------
|
| 150 |
+
# 🚀 Run Server
|
| 151 |
+
# ------------------------------
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
import os
|
| 154 |
+
port = int(os.environ.get("PORT", 8000))
|
| 155 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
| 156 |
+
|
| 157 |
+
|
model_helper.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, cv2, numpy as np
|
| 2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from facenet_pytorch import MTCNN
|
| 5 |
+
from temporal_model import TemporalConsistencyModel
|
| 6 |
+
import warnings, logging
|
| 7 |
+
import os
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
warnings.filterwarnings("ignore")
|
| 11 |
+
|
| 12 |
+
# ---------- Logger Setup ----------
|
| 13 |
+
logging.basicConfig(
|
| 14 |
+
level=logging.INFO,
|
| 15 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 16 |
+
handlers=[logging.StreamHandler()]
|
| 17 |
+
)
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
load_dotenv()
|
| 21 |
+
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
|
| 24 |
+
# ---------- Face Detector ----------
|
| 25 |
+
face_detector = MTCNN(keep_all=False, device=device)
|
| 26 |
+
|
| 27 |
+
# ---------- Temporal Model ----------
|
| 28 |
+
temporal_model = TemporalConsistencyModel(window=7, alpha=0.75)
|
| 29 |
+
|
| 30 |
+
# ---------- Model Definitions ----------
|
| 31 |
+
MODEL_PATHS = [
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
os.getenv("VIDEO_MODEL_1"),
|
| 35 |
+
os.getenv("VIDEO_MODEL_2"),
|
| 36 |
+
os.getenv("VIDEO_MODEL_3")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
models, processors = [], []
|
| 42 |
+
for mid in MODEL_PATHS:
|
| 43 |
+
try:
|
| 44 |
+
proc = AutoImageProcessor.from_pretrained(mid)
|
| 45 |
+
model = AutoModelForImageClassification.from_pretrained(mid).to(device)
|
| 46 |
+
model.eval()
|
| 47 |
+
models.append(model)
|
| 48 |
+
processors.append(proc)
|
| 49 |
+
logger.info(f"✅ Loaded model: {mid}")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
logger.warning(f"⚠️ Failed to load {mid}: {e}")
|
| 52 |
+
|
| 53 |
+
# ---------- Heuristic ----------
|
| 54 |
+
def heuristic_texture_analysis(frame):
|
| 55 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 56 |
+
freq = np.fft.fft2(gray)
|
| 57 |
+
freq_shift = np.fft.fftshift(freq)
|
| 58 |
+
mag = np.log(np.abs(freq_shift) + 1)
|
| 59 |
+
edge_var = np.var(cv2.Laplacian(gray, cv2.CV_64F))
|
| 60 |
+
texture_score = np.mean(mag) / (edge_var + 1e-5)
|
| 61 |
+
norm_score = np.clip(np.tanh(texture_score / 60), 0, 1)
|
| 62 |
+
return float(norm_score)
|
| 63 |
+
|
| 64 |
+
# ---------- Face Cropper (Fixed) ----------
|
| 65 |
+
def extract_face(frame):
|
| 66 |
+
boxes, _ = face_detector.detect(frame)
|
| 67 |
+
if boxes is not None and len(boxes) > 0:
|
| 68 |
+
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
| 69 |
+
face = frame[y1:y2, x1:x2]
|
| 70 |
+
|
| 71 |
+
if face is None or face.size == 0:
|
| 72 |
+
logger.warning("⚠️ Detected invalid face region; skipping frame.")
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
+
return cv2.resize(face, (224, 224))
|
| 76 |
+
else:
|
| 77 |
+
logger.info("ℹ️ No face detected in this frame; skipping.")
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
+
# ---------- Prediction ----------
|
| 81 |
+
def predict_frame(frame):
|
| 82 |
+
face_img = extract_face(frame)
|
| 83 |
+
if face_img is None:
|
| 84 |
+
return None # skip frame gracefully
|
| 85 |
+
|
| 86 |
+
frame_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
|
| 87 |
+
preds = []
|
| 88 |
+
|
| 89 |
+
for model, proc in zip(models, processors):
|
| 90 |
+
try:
|
| 91 |
+
inputs = proc(images=frame_img, return_tensors="pt").to(device)
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
logits = model(**inputs).logits
|
| 94 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)[0].cpu().numpy()
|
| 95 |
+
|
| 96 |
+
id2label = model.config.id2label
|
| 97 |
+
label_idx = np.argmax(probs)
|
| 98 |
+
|
| 99 |
+
if str(label_idx) in id2label:
|
| 100 |
+
label = id2label[str(label_idx)].lower()
|
| 101 |
+
elif label_idx in id2label:
|
| 102 |
+
label = id2label[label_idx].lower()
|
| 103 |
+
else:
|
| 104 |
+
label = "unknown"
|
| 105 |
+
|
| 106 |
+
is_fake = any(k in label for k in ["fake", "forged", "manipulated", "edited"])
|
| 107 |
+
confidence = float(probs[label_idx])
|
| 108 |
+
|
| 109 |
+
score = confidence if is_fake else 1 - confidence
|
| 110 |
+
preds.append(score)
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
logger.warning(f"⚠️ Model prediction failed for {model.__class__.__name__}: {e}")
|
| 114 |
+
|
| 115 |
+
if not preds:
|
| 116 |
+
logger.warning("⚠️ No valid model predictions; skipping frame.")
|
| 117 |
+
return None
|
| 118 |
+
|
| 119 |
+
# Weighted average (CNN:0.4, ViT:0.35, BEiT:0.25)
|
| 120 |
+
weights = np.array([0.4, 0.35, 0.25])[:len(preds)]
|
| 121 |
+
weights /= weights.sum()
|
| 122 |
+
weighted_score = np.dot(preds, weights)
|
| 123 |
+
return float(np.clip(weighted_score, 0, 1))
|
| 124 |
+
|
| 125 |
+
# ---------- Main Pipeline ----------
|
| 126 |
+
def ensemble_predict_video(video_path, frame_interval=10):
|
| 127 |
+
cap = cv2.VideoCapture(video_path)
|
| 128 |
+
frame_preds, heuristics = [], []
|
| 129 |
+
frame_count = 0
|
| 130 |
+
|
| 131 |
+
while True:
|
| 132 |
+
ret, frame = cap.read()
|
| 133 |
+
if not ret:
|
| 134 |
+
break
|
| 135 |
+
|
| 136 |
+
if frame_count % frame_interval == 0:
|
| 137 |
+
model_score = predict_frame(frame)
|
| 138 |
+
if model_score is None:
|
| 139 |
+
frame_count += 1
|
| 140 |
+
continue
|
| 141 |
+
|
| 142 |
+
heuristic_score = heuristic_texture_analysis(frame)
|
| 143 |
+
combined_score = 0.8 * model_score + 0.2 * heuristic_score
|
| 144 |
+
temporal_score = temporal_model.update(combined_score)
|
| 145 |
+
|
| 146 |
+
frame_preds.append(temporal_score)
|
| 147 |
+
heuristics.append(heuristic_score)
|
| 148 |
+
|
| 149 |
+
frame_count += 1
|
| 150 |
+
|
| 151 |
+
cap.release()
|
| 152 |
+
|
| 153 |
+
if not frame_preds:
|
| 154 |
+
logger.error("❌ No valid frames processed. Returning unknown result.")
|
| 155 |
+
return {"top": {"label": "unknown", "score": 0.0}}
|
| 156 |
+
|
| 157 |
+
model_score = float(np.mean(frame_preds))
|
| 158 |
+
heuristic_score = float(np.mean(heuristics))
|
| 159 |
+
final_score = float(np.clip(model_score, 0, 1))
|
| 160 |
+
|
| 161 |
+
logger.info(f"✅ Video processed | Final Score: {final_score:.4f}")
|
| 162 |
+
|
| 163 |
+
return {
|
| 164 |
+
"top": {
|
| 165 |
+
"label": "fake" if final_score > 0.55 else "real",
|
| 166 |
+
"score": round(final_score, 4)
|
| 167 |
+
},
|
| 168 |
+
"model_score": round(model_score, 4),
|
| 169 |
+
"heuristic_score": round(heuristic_score, 4),
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
# ---------- Compatibility Wrapper ----------
|
| 173 |
+
def ensemble_predict_from_path(video_path):
|
| 174 |
+
"""Compatibility wrapper for main.py"""
|
| 175 |
+
return ensemble_predict_video(video_path)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
#***********************************************************************************************************************************************************************************************************************
|
| 179 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
pillow
|
| 4 |
+
opencv-python
|
| 5 |
+
numpy
|
| 6 |
+
torch
|
| 7 |
+
torchvision
|
| 8 |
+
timm
|
| 9 |
+
transformers
|
| 10 |
+
facenet-pytorch
|
| 11 |
+
scipy
|
| 12 |
+
python-multipart
|
| 13 |
+
aiofiles
|
| 14 |
+
ffmpeg-python
|
| 15 |
+
imageio
|
| 16 |
+
matplotlib
|
| 17 |
+
scikit-image
|
| 18 |
+
retina-face
|
temporal_model.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
class TemporalConsistencyModel:
|
| 4 |
+
"""
|
| 5 |
+
Simple temporal smoothing model to capture flicker and irregular changes.
|
| 6 |
+
Works as a moving average + penalty for inconsistent transitions.
|
| 7 |
+
"""
|
| 8 |
+
def __init__(self, window=5, alpha=0.7):
|
| 9 |
+
self.window = window
|
| 10 |
+
self.alpha = alpha
|
| 11 |
+
self.history = []
|
| 12 |
+
|
| 13 |
+
def update(self, score):
|
| 14 |
+
self.history.append(score)
|
| 15 |
+
if len(self.history) > self.window:
|
| 16 |
+
self.history.pop(0)
|
| 17 |
+
smoothed = np.mean(self.history)
|
| 18 |
+
# penalize high oscillations
|
| 19 |
+
flicker_penalty = np.std(self.history)
|
| 20 |
+
final = (self.alpha * smoothed) - (0.5 * flicker_penalty)
|
| 21 |
+
return np.clip(final, 0, 1)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
####################################################################################################################################################3
|
| 25 |
+
|