Commit
·
b30a615
1
Parent(s):
d01f438
initial project files
Browse files- .DS_Store +0 -0
- app.py +213 -0
- model/NN_CPU_model.keras +0 -0
- model/scaler_X.pkl +0 -0
- model/scaler_y.pkl +0 -0
- requirements.txt +9 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#+--------------------------------------------------------------------------------------------+
|
| 2 |
+
# Model for Stock Price Prediction via Dense only Neural Network
|
| 3 |
+
# Using today vs tomorrow analysis
|
| 4 |
+
#
|
| 5 |
+
# Written by: Prakash R. Kota
|
| 6 |
+
# Location: East Greenbush, NY
|
| 7 |
+
#
|
| 8 |
+
# Using just a Dense Neural Network Model
|
| 9 |
+
# Adding lots of direct stock parmeters from Yahoo Finance
|
| 10 |
+
# Open, High, Low, Close, Volume
|
| 11 |
+
#
|
| 12 |
+
# Will not be using other parameters such as
|
| 13 |
+
# Return, SMA10, EMA10, RollingVol10,
|
| 14 |
+
# SP500, Nasdaq, VIX
|
| 15 |
+
# RSI, Day-of-Week
|
| 16 |
+
# Removed all saving and graphing from PRK_1a_tf_Stock_NN.ipnyb
|
| 17 |
+
# Keeping it minimal for just the stock prediction and output display table
|
| 18 |
+
# Goal is to make a MVP - Minimal Viable Product
|
| 19 |
+
# Infer the NN Model from the Saved Model - app.py required for Hugging Face Space
|
| 20 |
+
#
|
| 21 |
+
# PRK_1b_2_Model_Infer_tf_Stock_NN.ipnyb - Using Tensorflow 2.16.2 CPU
|
| 22 |
+
# based on
|
| 23 |
+
# PRK_1b_tf_Stock_NN.ipnyb
|
| 24 |
+
# PRK_1a_tf_Stock_NN.ipnyb
|
| 25 |
+
# PRK_11b_tf_Stock_DenseOnly.ipynb
|
| 26 |
+
# Renamed PRK_10e_tf_Stock_DenseOnly.ipynb for convenience
|
| 27 |
+
# This is the best Notebook Code for the NN Model
|
| 28 |
+
#
|
| 29 |
+
# Written on: 28 Mar 2025
|
| 30 |
+
# Last update: 29 Mar 2025
|
| 31 |
+
#+--------------------------------------------------------------------------------------------+
|
| 32 |
+
|
| 33 |
+
import gradio as gr
|
| 34 |
+
import numpy as np
|
| 35 |
+
import pandas as pd
|
| 36 |
+
import yfinance as yf
|
| 37 |
+
from datetime import datetime
|
| 38 |
+
from pandas.tseries.offsets import BDay
|
| 39 |
+
from tabulate import tabulate
|
| 40 |
+
import os
|
| 41 |
+
|
| 42 |
+
from tensorflow.keras.models import load_model
|
| 43 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 44 |
+
import joblib
|
| 45 |
+
|
| 46 |
+
import sklearn
|
| 47 |
+
import tensorflow as tf
|
| 48 |
+
import shutil
|
| 49 |
+
from pytz import timezone
|
| 50 |
+
from pandas.tseries.offsets import BDay
|
| 51 |
+
import hashlib
|
| 52 |
+
|
| 53 |
+
# --- Load saved model and scalers --- #
|
| 54 |
+
model_dir = "./model"
|
| 55 |
+
# import os
|
| 56 |
+
# model_dir = os.path.join(os.path.dirname(__file__), "model")
|
| 57 |
+
|
| 58 |
+
NN_model = load_model(os.path.join(model_dir, "NN_CPU_model.keras"))
|
| 59 |
+
|
| 60 |
+
NN_model.compile(optimizer="adam", loss="mse") # even if not used, ensures full init
|
| 61 |
+
NN_model.predict(np.zeros((1, 5))) # warm-up dummy prediction
|
| 62 |
+
|
| 63 |
+
scaler_X = joblib.load(os.path.join(model_dir, "scaler_X.pkl"))
|
| 64 |
+
scaler_y = joblib.load(os.path.join(model_dir, "scaler_y.pkl"))
|
| 65 |
+
|
| 66 |
+
# --- Inference Function --- #
|
| 67 |
+
def predict_stock():
|
| 68 |
+
|
| 69 |
+
# --- Clear yfinance cache to get latest volume and price data --- #
|
| 70 |
+
cache_path = os.path.expanduser("~/.cache/py-yfinance")
|
| 71 |
+
if os.path.exists(cache_path):
|
| 72 |
+
print("Clearing yfinance cache...")
|
| 73 |
+
shutil.rmtree(cache_path)
|
| 74 |
+
|
| 75 |
+
Stock = "NVDA"
|
| 76 |
+
start_date = "2020-01-01"
|
| 77 |
+
train_end_date = "2024-12-31"
|
| 78 |
+
today = datetime.today().strftime('%Y-%m-%d')
|
| 79 |
+
|
| 80 |
+
# Download the full dataset (might contain stale final row)
|
| 81 |
+
try:
|
| 82 |
+
full_data = yf.download(
|
| 83 |
+
tickers=Stock,
|
| 84 |
+
start=start_date,
|
| 85 |
+
end=today,
|
| 86 |
+
interval="1d",
|
| 87 |
+
auto_adjust=False,
|
| 88 |
+
actions=False,
|
| 89 |
+
progress=False,
|
| 90 |
+
threads=False
|
| 91 |
+
)
|
| 92 |
+
if full_data.empty:
|
| 93 |
+
raise RuntimeError("Download failed or returned no data.")
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print("yfinance error:", e)
|
| 96 |
+
return "Error: Could not fetch stock data. Please try again later.", pd.DataFrame()
|
| 97 |
+
|
| 98 |
+
features = ["Open", "High", "Low", "Close", "Volume"]
|
| 99 |
+
|
| 100 |
+
X_scaled = scaler_X.transform(full_data[features])
|
| 101 |
+
y = full_data["Close"].values.reshape(-1, 1)
|
| 102 |
+
y_scaled = scaler_y.transform(y)
|
| 103 |
+
|
| 104 |
+
X_all = X_scaled[:-1]
|
| 105 |
+
y_all = y_scaled[1:].flatten()
|
| 106 |
+
dates_all = full_data.index[1:]
|
| 107 |
+
|
| 108 |
+
test_mask = dates_all > pd.to_datetime(train_end_date)
|
| 109 |
+
X_test, y_test = X_all[test_mask], y_all[test_mask]
|
| 110 |
+
dates_test = dates_all[test_mask]
|
| 111 |
+
|
| 112 |
+
# Predict next day prices
|
| 113 |
+
y_pred_scaled = NN_model.predict(X_test).flatten()
|
| 114 |
+
y_pred = scaler_y.inverse_transform(y_pred_scaled.reshape(-1, 1)).flatten()
|
| 115 |
+
y_true = scaler_y.inverse_transform(y_test.reshape(-1, 1)).flatten()
|
| 116 |
+
|
| 117 |
+
last_date = full_data.index[-1]
|
| 118 |
+
last_close_price = float(full_data["Close"].iloc[-1].item())
|
| 119 |
+
X_input = X_scaled[-1].reshape(1, -1)
|
| 120 |
+
|
| 121 |
+
next_day_pred_scaled = NN_model.predict(X_input)
|
| 122 |
+
next_day_pred = scaler_y.inverse_transform(next_day_pred_scaled)[0][0]
|
| 123 |
+
|
| 124 |
+
mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100
|
| 125 |
+
std_ape = np.std(np.abs((y_true - y_pred) / y_true)) * 100
|
| 126 |
+
|
| 127 |
+
mape_margin = next_day_pred * (mape / 100)
|
| 128 |
+
sae_margin = next_day_pred * (std_ape / 100)
|
| 129 |
+
|
| 130 |
+
next_date = (last_date + BDay(1)).date()
|
| 131 |
+
|
| 132 |
+
summary_lines = [
|
| 133 |
+
f"Prediction for {Stock}:",
|
| 134 |
+
f"Last available date: {last_date.date()}, Close = ${last_close_price:.2f}",
|
| 135 |
+
f"Predicted closing price for next trading day ({next_date}): ${next_day_pred:.2f}",
|
| 136 |
+
f"Expected range (±MAPE): ${next_day_pred - mape_margin:.2f} to ${next_day_pred + mape_margin:.2f}",
|
| 137 |
+
f"Expected range (±SAE): ${next_day_pred - sae_margin:.2f} to ${next_day_pred + sae_margin:.2f}"
|
| 138 |
+
]
|
| 139 |
+
summary = "\n".join(summary_lines)
|
| 140 |
+
|
| 141 |
+
prediction_df = pd.DataFrame({
|
| 142 |
+
'Date': dates_test,
|
| 143 |
+
'Actual Close': y_true,
|
| 144 |
+
'Predicted Close': y_pred
|
| 145 |
+
})
|
| 146 |
+
|
| 147 |
+
prediction_df['% Error'] = ((prediction_df['Actual Close'] - prediction_df['Predicted Close']) / prediction_df['Actual Close']) * 100
|
| 148 |
+
prediction_df['% Error'] = prediction_df['% Error'].map(lambda x: f"{x:+.2f}%")
|
| 149 |
+
prediction_df['±MAPE Range'] = prediction_df['Predicted Close'].apply(
|
| 150 |
+
lambda x: f"${x * (1 - mape/100):.2f} to ${x * (1 + mape/100):.2f}"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
prediction_df['Date'] = prediction_df['Date'].dt.strftime("%Y-%m-%d")
|
| 154 |
+
prediction_df['Actual Close'] = prediction_df['Actual Close'].map(lambda x: f"${x:.2f}")
|
| 155 |
+
prediction_df['Predicted Close'] = prediction_df['Predicted Close'].map(lambda x: f"${x:.2f}")
|
| 156 |
+
prediction_df = prediction_df.sort_values("Date", ascending=False)
|
| 157 |
+
|
| 158 |
+
headers = ["Prediction For Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"]
|
| 159 |
+
table = tabulate(prediction_df.values, headers=headers, tablefmt="plain")
|
| 160 |
+
|
| 161 |
+
"""
|
| 162 |
+
# Start Sanity Checks
|
| 163 |
+
assert not np.any(np.isnan(X_scaled[-1].reshape(1, -1))), "NaNs detected in input!"
|
| 164 |
+
assert X_scaled[-1].reshape(1, -1).shape == (1, X_scaled.shape[1]), f"Unexpected shape: {X_scaled[-1].reshape(1, -1).shape}"
|
| 165 |
+
print("X_input shape:", X_scaled[-1].reshape(1, -1).shape)
|
| 166 |
+
print("X_input contains NaNs:", np.any(np.isnan(X_scaled[-1].reshape(1, -1))))
|
| 167 |
+
|
| 168 |
+
print("Latest data row used for prediction:")
|
| 169 |
+
print(full_data[features].iloc[-1])
|
| 170 |
+
|
| 171 |
+
print("scikit-learn version:", sklearn.__version__)
|
| 172 |
+
print("tensorflow version:", tf.__version__)
|
| 173 |
+
print("scaler_X min/max:", scaler_X.data_min_, scaler_X.data_max_)
|
| 174 |
+
print("scaler_y min/max:", scaler_y.data_min_, scaler_y.data_max_)
|
| 175 |
+
|
| 176 |
+
# Run a prediction on a known fixed input
|
| 177 |
+
x_debug = np.array([[0.5, 0.5, 0.5, 0.5, 0.5]])
|
| 178 |
+
y_debug = NN_model.predict(x_debug)
|
| 179 |
+
y_debug_unscaled = scaler_y.inverse_transform(y_debug)
|
| 180 |
+
print("Debug prediction (scaled):", y_debug)
|
| 181 |
+
print("Debug prediction (unscaled):", y_debug_unscaled)
|
| 182 |
+
|
| 183 |
+
import hashlib
|
| 184 |
+
|
| 185 |
+
def md5(fname):
|
| 186 |
+
with open(fname, "rb") as f:
|
| 187 |
+
return hashlib.md5(f.read()).hexdigest()
|
| 188 |
+
|
| 189 |
+
#print("Model MD5 checksum:", md5(os.path.join(model_dir, "NN_CPU_model.keras")))
|
| 190 |
+
|
| 191 |
+
print(full_data.tail(3))
|
| 192 |
+
|
| 193 |
+
# End Sanitiy Checks"
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
return summary, prediction_df[["Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"]]
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# --- Gradio Interface --- #
|
| 201 |
+
demo = gr.Interface(
|
| 202 |
+
fn=predict_stock,
|
| 203 |
+
inputs=[],
|
| 204 |
+
outputs=[
|
| 205 |
+
gr.Textbox(label="Prediction Summary", lines=6),
|
| 206 |
+
gr.Dataframe(headers=["Prediction For Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"], label="Prediction Table (2025+)")
|
| 207 |
+
],
|
| 208 |
+
title="📈 NVDA Stock Predictor",
|
| 209 |
+
description="This app uses a Dense Neural Network to predict NVDA's next trading day's closing price.",
|
| 210 |
+
live=False
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
demo.launch(share=True)
|
model/NN_CPU_model.keras
ADDED
|
Binary file (55.3 kB). View file
|
|
|
model/scaler_X.pkl
ADDED
|
Binary file (879 Bytes). View file
|
|
|
model/scaler_y.pkl
ADDED
|
Binary file (719 Bytes). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==5.23.1
|
| 2 |
+
numpy==1.26.4
|
| 3 |
+
pandas==2.2.3
|
| 4 |
+
yfinance==0.2.55
|
| 5 |
+
tabulate==0.9.0
|
| 6 |
+
tensorflow==2.16.2
|
| 7 |
+
scikit-learn==1.6.1
|
| 8 |
+
joblib==1.4.2
|
| 9 |
+
pytz==2025.1
|