Update index.js
Browse files
index.js
CHANGED
|
@@ -68,21 +68,31 @@ async function parse(img, txt) {
|
|
| 68 |
status.textContent = output;
|
| 69 |
}
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
const prompt_head_len = new Tensor("int64", new BigInt64Array([5n]), [1]);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
let history_len = new Tensor("int64", new BigInt64Array([0n]), [1]);
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
let past_key_states = new ort.Tensor(
|
| 80 |
"float16",
|
| 81 |
new Uint16Array(
|
| 82 |
config.num_hidden_layers *
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
).fill(0),
|
| 87 |
[
|
| 88 |
config.num_hidden_layers,
|
|
@@ -91,8 +101,19 @@ async function imageTextToText(imagePath, query, vision = true) {
|
|
| 91 |
config.hidden_size / config.num_attention_heads,
|
| 92 |
]
|
| 93 |
);
|
|
|
|
| 94 |
let past_value_states = past_key_states;
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
const tokenizer = await AutoTokenizer.from_pretrained(BASE_MODEL);
|
| 97 |
const prompt = `\n<|im_start|>user\n<|vision_start|><|vision_end|>${query}<|im_end|>\n<|im_start|>assistant\n`;
|
| 98 |
const token = await tokenizer(prompt, {
|
|
@@ -101,72 +122,112 @@ async function imageTextToText(imagePath, query, vision = true) {
|
|
| 101 |
tokenize: true,
|
| 102 |
}).input_ids;
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
let input_ids = new ort.Tensor(
|
| 106 |
"int32",
|
| 107 |
new Int32Array(MAX_SEQ_LENGTH).fill(0),
|
| 108 |
[MAX_SEQ_LENGTH]
|
| 109 |
);
|
| 110 |
-
input_ids.data.set(Array.from(token.data.slice(0, token.dims[1]), Number));
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
let { hidden_states } = await ortSessionB.run({
|
| 114 |
input_ids: input_ids,
|
| 115 |
ids_len: ids_len,
|
| 116 |
});
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
| 120 |
|
|
|
|
| 121 |
if (vision) {
|
| 122 |
let image = await RawImage.fromURL(imagePath);
|
|
|
|
| 123 |
image = await image.resize(INPUT_IMAGE_SIZE[0], INPUT_IMAGE_SIZE[1]);
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
const pixel_values = image.unsqueeze(0);
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
| 130 |
ids_len = ids_len.add(BigInt(IMAGE_EMBED_SIZE));
|
| 131 |
|
| 132 |
-
const
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
await getModelFile(ONNX_MODEL, `onnx/QwenVL_D_${QUANT}.onnx`),
|
| 134 |
-
{
|
|
|
|
|
|
|
| 135 |
);
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
"hidden_states.1": hidden_states,
|
| 140 |
image_embed,
|
| 141 |
ids_len,
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
[1]
|
| 146 |
-
),
|
| 147 |
-
"split_factor": new Tensor(
|
| 148 |
-
"int32",
|
| 149 |
-
new Int32Array([MAX_SEQ_LENGTH - Number(ids_len.item()) - IMAGE_EMBED_SIZE]),
|
| 150 |
-
[1]
|
| 151 |
-
),
|
| 152 |
-
});
|
| 153 |
-
console.log('finished session d');
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
}
|
| 158 |
|
| 159 |
-
let num_decode = 0;
|
| 160 |
let output = '';
|
| 161 |
-
|
| 162 |
-
while (num_decode < MAX_SINGLE_CHAT_LENGTH && Number(history_len.data[0]) < MAX_SEQ_LENGTH) {
|
| 163 |
-
const ortSessionE = await ort.InferenceSession.create(
|
| 164 |
-
await getModelFile(ONNX_MODEL, `onnx/QwenVL_E_${QUANT}.onnx`),
|
| 165 |
-
{ executionProviders: ["wasm"] }
|
| 166 |
-
);
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
attention_mask,
|
| 171 |
"past_key_states.1": past_key_states,
|
| 172 |
"past_value_states.1": past_value_states,
|
|
@@ -174,35 +235,61 @@ async function imageTextToText(imagePath, query, vision = true) {
|
|
| 174 |
ids_len,
|
| 175 |
position_ids,
|
| 176 |
pos_factor,
|
| 177 |
-
});
|
| 178 |
-
console.log('finished session e');
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
|
|
|
| 182 |
|
| 183 |
-
output += tokenizer.decode([...token_id.data]);
|
| 184 |
-
|
| 185 |
num_decode++;
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
"float16",
|
| 189 |
-
new Uint16Array([Number(pos_factor.data[0]) + 1]),
|
| 190 |
-
[1]
|
| 191 |
-
);
|
| 192 |
|
| 193 |
-
|
| 194 |
-
past_value_states = result.past_value_states;
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
});
|
|
|
|
| 201 |
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
}
|
| 204 |
-
|
| 205 |
-
return output;
|
| 206 |
}
|
| 207 |
|
| 208 |
await initializeSessions();
|
|
|
|
| 68 |
status.textContent = output;
|
| 69 |
}
|
| 70 |
|
| 71 |
+
|
| 72 |
+
export async function imageTextToText(
|
| 73 |
+
imagePath,
|
| 74 |
+
query,
|
| 75 |
+
vision = true
|
| 76 |
+
) {
|
| 77 |
+
let ortSessionA, ortSessionB, ortSessionC, ortSessionD, ortSessionE;
|
| 78 |
+
|
| 79 |
const prompt_head_len = new Tensor("int64", new BigInt64Array([5n]), [1]);
|
| 80 |
+
logger.tensor("prompt_head_len", prompt_head_len);
|
| 81 |
+
|
| 82 |
+
let position_ids;
|
| 83 |
+
let num_decode = 0;
|
| 84 |
let history_len = new Tensor("int64", new BigInt64Array([0n]), [1]);
|
| 85 |
+
logger.tensor("history_len", history_len);
|
| 86 |
+
|
| 87 |
+
var pos_factor_v = BigInt(1 - IMAGE_EMBED_SIZE + WIDTH_FACTOR);
|
| 88 |
+
|
| 89 |
let past_key_states = new ort.Tensor(
|
| 90 |
"float16",
|
| 91 |
new Uint16Array(
|
| 92 |
config.num_hidden_layers *
|
| 93 |
+
config.num_key_value_heads *
|
| 94 |
+
MAX_SEQ_LENGTH *
|
| 95 |
+
(config.hidden_size / config.num_attention_heads)
|
| 96 |
).fill(0),
|
| 97 |
[
|
| 98 |
config.num_hidden_layers,
|
|
|
|
| 101 |
config.hidden_size / config.num_attention_heads,
|
| 102 |
]
|
| 103 |
);
|
| 104 |
+
|
| 105 |
let past_value_states = past_key_states;
|
| 106 |
|
| 107 |
+
let attention_mask = new ort.Tensor(
|
| 108 |
+
"float16",
|
| 109 |
+
new Uint16Array([0xfbff]),
|
| 110 |
+
[1]
|
| 111 |
+
);
|
| 112 |
+
|
| 113 |
+
let pos_factor = new Tensor("float16", new Uint16Array([0]), [1]);
|
| 114 |
+
logger.tensor("pos_factor", pos_factor);
|
| 115 |
+
|
| 116 |
+
logger.groupCollapsed("[TOKENIZATION] Processing prompt...");
|
| 117 |
const tokenizer = await AutoTokenizer.from_pretrained(BASE_MODEL);
|
| 118 |
const prompt = `\n<|im_start|>user\n<|vision_start|><|vision_end|>${query}<|im_end|>\n<|im_start|>assistant\n`;
|
| 119 |
const token = await tokenizer(prompt, {
|
|
|
|
| 122 |
tokenize: true,
|
| 123 |
}).input_ids;
|
| 124 |
|
| 125 |
+
const seq_length = token.dims[1];
|
| 126 |
+
let ids_len = new Tensor("int64", new BigInt64Array([BigInt(seq_length)]), [
|
| 127 |
+
1,
|
| 128 |
+
]);
|
| 129 |
+
|
| 130 |
let input_ids = new ort.Tensor(
|
| 131 |
"int32",
|
| 132 |
new Int32Array(MAX_SEQ_LENGTH).fill(0),
|
| 133 |
[MAX_SEQ_LENGTH]
|
| 134 |
);
|
|
|
|
| 135 |
|
| 136 |
+
input_ids.data.set(Array.from(token.data.slice(0, seq_length), Number));
|
| 137 |
+
|
| 138 |
+
const dummy = new ort.Tensor("int32", new Int32Array([0]), []);
|
| 139 |
+
|
| 140 |
+
if (!ortSessionB) {
|
| 141 |
+
}
|
| 142 |
let { hidden_states } = await ortSessionB.run({
|
| 143 |
input_ids: input_ids,
|
| 144 |
ids_len: ids_len,
|
| 145 |
});
|
| 146 |
|
| 147 |
+
({ position_ids } = await ortSessionC.run({
|
| 148 |
+
dummy: dummy,
|
| 149 |
+
}));
|
| 150 |
|
| 151 |
+
// Process image
|
| 152 |
if (vision) {
|
| 153 |
let image = await RawImage.fromURL(imagePath);
|
| 154 |
+
|
| 155 |
image = await image.resize(INPUT_IMAGE_SIZE[0], INPUT_IMAGE_SIZE[1]);
|
| 156 |
+
|
| 157 |
+
image = image.rgb();
|
| 158 |
+
|
| 159 |
+
image = image.toTensor("CHW");
|
| 160 |
+
image = image.to("float32");
|
| 161 |
+
image = image.div_(255.0);
|
| 162 |
const pixel_values = image.unsqueeze(0);
|
| 163 |
|
| 164 |
+
const { image_embed } = await ortSessionA.run({
|
| 165 |
+
pixel_values: pixel_values,
|
| 166 |
+
});
|
| 167 |
+
|
| 168 |
ids_len = ids_len.add(BigInt(IMAGE_EMBED_SIZE));
|
| 169 |
|
| 170 |
+
const split_factor = new Tensor(
|
| 171 |
+
"int32",
|
| 172 |
+
new Int32Array([
|
| 173 |
+
MAX_SEQ_LENGTH - Number(ids_len.item()) - IMAGE_EMBED_SIZE,
|
| 174 |
+
]),
|
| 175 |
+
[1]
|
| 176 |
+
);
|
| 177 |
+
|
| 178 |
+
const ids_len_minus = new Tensor(
|
| 179 |
+
"int32",
|
| 180 |
+
new Int32Array([Number(ids_len.item()) - Number(prompt_head_len.item())]),
|
| 181 |
+
[1]
|
| 182 |
+
);
|
| 183 |
+
|
| 184 |
+
await ortSessionA.release();
|
| 185 |
+
ortSessionA = null;
|
| 186 |
+
|
| 187 |
+
logger.log("session d create");
|
| 188 |
+
ortSessionD = await ort.InferenceSession.create(
|
| 189 |
await getModelFile(ONNX_MODEL, `onnx/QwenVL_D_${QUANT}.onnx`),
|
| 190 |
+
{
|
| 191 |
+
executionProviders: ["webgpu"],
|
| 192 |
+
}
|
| 193 |
);
|
| 194 |
|
| 195 |
+
({ hidden_states, position_ids } = await ortSessionD.run({
|
| 196 |
+
"hidden_states.1": hidden_states,
|
|
|
|
| 197 |
image_embed,
|
| 198 |
ids_len,
|
| 199 |
+
ids_len_minus,
|
| 200 |
+
split_factor,
|
| 201 |
+
}));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
await ortSessionD.release();
|
| 204 |
+
ortSessionD = null;
|
| 205 |
}
|
| 206 |
|
|
|
|
| 207 |
let output = '';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
while (
|
| 210 |
+
num_decode < MAX_SINGLE_CHAT_LENGTH &&
|
| 211 |
+
Number(history_len.data[0]) < MAX_SEQ_LENGTH
|
| 212 |
+
) {
|
| 213 |
+
let token_id;
|
| 214 |
+
|
| 215 |
+
if (!ortSessionE) {
|
| 216 |
+
console.log("Create ortSessionE");
|
| 217 |
+
ortSessionE = await ort.InferenceSession.create(
|
| 218 |
+
await getModelFile(ONNX_MODEL, `onnx/QwenVL_E_${QUANT}.onnx`),
|
| 219 |
+
{
|
| 220 |
+
executionProviders: ["wasm"],
|
| 221 |
+
},
|
| 222 |
+
);
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
({
|
| 226 |
+
max_logit_ids: token_id,
|
| 227 |
+
past_key_states: past_key_states,
|
| 228 |
+
past_value_states: past_value_states,
|
| 229 |
+
} = await ortSessionE.run({
|
| 230 |
+
hidden_states,
|
| 231 |
attention_mask,
|
| 232 |
"past_key_states.1": past_key_states,
|
| 233 |
"past_value_states.1": past_value_states,
|
|
|
|
| 235 |
ids_len,
|
| 236 |
position_ids,
|
| 237 |
pos_factor,
|
| 238 |
+
}));
|
|
|
|
| 239 |
|
| 240 |
+
if (token_id === 151643 || token_id === 151645) {
|
| 241 |
+
break;
|
| 242 |
+
}
|
| 243 |
|
|
|
|
|
|
|
| 244 |
num_decode++;
|
| 245 |
+
if (num_decode < 2) {
|
| 246 |
+
history_len = history_len.add(BigInt(ids_len.data[0]));
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
+
ids_len = new ort.Tensor("int64", new BigInt64Array([1n]), [1]);
|
|
|
|
| 249 |
|
| 250 |
+
attention_mask = new ort.Tensor("float16", new Uint16Array([0]), [1]);
|
| 251 |
+
|
| 252 |
+
if (vision) {
|
| 253 |
+
pos_factor = new Tensor(
|
| 254 |
+
"float16",
|
| 255 |
+
new Uint16Array([int64ToFloat16(pos_factor_v + ids_len.data[0])]),
|
| 256 |
+
[1]
|
| 257 |
+
);
|
| 258 |
+
} else {
|
| 259 |
+
pos_factor = new Tensor(
|
| 260 |
+
"float16",
|
| 261 |
+
new Uint16Array([int64ToFloat16(history_len.data[0] + BigInt(1))]),
|
| 262 |
+
[1]
|
| 263 |
+
);
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
} else {
|
| 267 |
+
history_len = history_len.add(BigInt(1));
|
| 268 |
+
pos_factor = pos_factor.map((v) =>
|
| 269 |
+
int64ToFloat16(float16ToInt64(v) + BigInt(1))
|
| 270 |
+
);
|
| 271 |
+
logger.tensor("Updated history_len", history_len);
|
| 272 |
+
logger.tensor("Updated pos_factor", pos_factor);
|
| 273 |
+
logger.groupEnd();
|
| 274 |
+
}
|
| 275 |
+
(input_ids.data)[0] = Number(token_id.data[0]);
|
| 276 |
+
|
| 277 |
+
const result_B = await ortSessionB.run({
|
| 278 |
+
input_ids: input_ids,
|
| 279 |
+
ids_len: ids_len,
|
| 280 |
});
|
| 281 |
+
hidden_states = result_B.hidden_states;
|
| 282 |
|
| 283 |
+
if (
|
| 284 |
+
!Number.isInteger(token_id.data[0]) &&
|
| 285 |
+
!["bigint", "number"].includes(typeof token_id.data[0])
|
| 286 |
+
) {
|
| 287 |
+
throw new Error(`Token ID is not an integer`);
|
| 288 |
+
} else {
|
| 289 |
+
const decoded = tokenizer.decode([...token_id.data])
|
| 290 |
+
output += decoded;
|
| 291 |
+
}
|
| 292 |
}
|
|
|
|
|
|
|
| 293 |
}
|
| 294 |
|
| 295 |
await initializeSessions();
|