Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
|
| 5 |
+
# Load data
|
| 6 |
+
df = pd.read_csv("fatwas.csv")
|
| 7 |
+
model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 8 |
+
embeddings = model.encode(df["question"].tolist(), convert_to_tensor=True)
|
| 9 |
+
|
| 10 |
+
def search_fatwa(query):
|
| 11 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 12 |
+
scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
| 13 |
+
top_idx = int(scores.argmax())
|
| 14 |
+
return {
|
| 15 |
+
"question": df.iloc[top_idx]["question"],
|
| 16 |
+
"answer": df.iloc[top_idx]["answer"],
|
| 17 |
+
"link": df.iloc[top_idx]["link"]
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
iface = gr.Interface(
|
| 21 |
+
fn=search_fatwa,
|
| 22 |
+
inputs="text",
|
| 23 |
+
outputs="json",
|
| 24 |
+
allow_flagging="never",
|
| 25 |
+
title="Fatwa Search",
|
| 26 |
+
description="Ask a question and receive a relevant fatwa with a verified link"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
iface.launch()
|