Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +121 -0
- customFunctions.py +470 -0
- performance_test.py +64 -0
app.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, redirect, url_for
|
| 2 |
+
from joblib import load
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import re
|
| 5 |
+
from customFunctions import *
|
| 6 |
+
import json
|
| 7 |
+
import datetime
|
| 8 |
+
|
| 9 |
+
pd.set_option('display.max_colwidth', 1000)
|
| 10 |
+
|
| 11 |
+
PIPELINES = [
|
| 12 |
+
{
|
| 13 |
+
'id': 1,
|
| 14 |
+
'name': 'Baseline',
|
| 15 |
+
'pipeline': load("pipeline_ex1_s1.joblib")
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
'id': 2,
|
| 19 |
+
'name': 'Trained on a FeedForward NN',
|
| 20 |
+
'pipeline': load("pipeline_ex1_s2.joblib")
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
'id': 3,
|
| 24 |
+
'name': 'Trained on a CRF',
|
| 25 |
+
'pipeline': load("pipeline_ex1_s3.joblib")
|
| 26 |
+
},
|
| 27 |
+
#{
|
| 28 |
+
# 'id': 4,
|
| 29 |
+
# 'name': 'Trained on a small dataset',
|
| 30 |
+
# 'pipeline': load("pipeline_ex2_s1.joblib")
|
| 31 |
+
#},
|
| 32 |
+
#{
|
| 33 |
+
# 'id': 5,
|
| 34 |
+
# 'name': 'Trained on a large dataset',
|
| 35 |
+
# 'pipeline': load("pipeline_ex2_s2.joblib")
|
| 36 |
+
#},
|
| 37 |
+
#{
|
| 38 |
+
# 'id': 6,
|
| 39 |
+
# 'name': 'Embedded using TFIDF',
|
| 40 |
+
# 'pipeline': load("pipeline_ex3_s1.joblib")
|
| 41 |
+
#},
|
| 42 |
+
#{
|
| 43 |
+
# 'id': 7,
|
| 44 |
+
# 'name': 'Embedded using ?',
|
| 45 |
+
# 'pipeline': load("pipeline_ex3_s2.joblib")
|
| 46 |
+
#},
|
| 47 |
+
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
|
| 51 |
+
|
| 52 |
+
def get_pipeline_by_id(pipelines, pipeline_id):
|
| 53 |
+
return next((p['pipeline'] for p in pipelines if p['id'] == pipeline_id), None)
|
| 54 |
+
|
| 55 |
+
def get_name_by_id(pipelines, pipeline_id):
|
| 56 |
+
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def requestResults(text, pipeline):
|
| 61 |
+
labels = pipeline.predict(text)
|
| 62 |
+
print(labels.ndim)
|
| 63 |
+
if labels.ndim != 1:
|
| 64 |
+
flattened_predictions = []
|
| 65 |
+
for sentence in labels:
|
| 66 |
+
for tag in sentence:
|
| 67 |
+
flattened_predictions.append(tag)
|
| 68 |
+
labels = flattened_predictions
|
| 69 |
+
print(labels)
|
| 70 |
+
labels = [int(label) for label in labels]
|
| 71 |
+
tag_encoder = LabelEncoder()
|
| 72 |
+
tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])
|
| 73 |
+
decoded_labels = tag_encoder.inverse_transform(labels)
|
| 74 |
+
return decoded_labels
|
| 75 |
+
|
| 76 |
+
LOG_FILE = "usage_log.jsonl" # Each line is a JSON object
|
| 77 |
+
|
| 78 |
+
def log_interaction(user_input, model_name, predictions):
|
| 79 |
+
log_entry = {
|
| 80 |
+
"timestamp": datetime.datetime.utcnow().isoformat(),
|
| 81 |
+
"user_input": user_input,
|
| 82 |
+
"model": model_name,
|
| 83 |
+
"predictions": predictions
|
| 84 |
+
}
|
| 85 |
+
with open(LOG_FILE, "a") as f:
|
| 86 |
+
f.write(json.dumps(log_entry) + "\n")
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
app = Flask(__name__)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@app.route('/')
|
| 93 |
+
def index():
|
| 94 |
+
return render_template('index.html', pipelines= pipeline_metadata)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@app.route('/', methods=['POST'])
|
| 98 |
+
def get_data():
|
| 99 |
+
if request.method == 'POST':
|
| 100 |
+
|
| 101 |
+
text = request.form['search']
|
| 102 |
+
tokens = re.findall(r"\w+|[^\w\s]", text)
|
| 103 |
+
tokens_fomatted = pd.Series([pd.Series(tokens)])
|
| 104 |
+
|
| 105 |
+
pipeline_id = int(request.form['pipeline_select'])
|
| 106 |
+
pipeline = get_pipeline_by_id(PIPELINES, pipeline_id)
|
| 107 |
+
name = get_name_by_id(PIPELINES, pipeline_id)
|
| 108 |
+
|
| 109 |
+
labels = requestResults(tokens_fomatted, pipeline)
|
| 110 |
+
results = dict(zip(tokens, labels))
|
| 111 |
+
|
| 112 |
+
log_interaction(text, name, results)
|
| 113 |
+
|
| 114 |
+
return render_template('index.html', results=results, name=name, pipelines= pipeline_metadata)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
if __name__ == '__main__':
|
| 118 |
+
app.run(host="0.0.0.0", port=7860)
|
| 119 |
+
|
| 120 |
+
#if __name__ == '__main__':
|
| 121 |
+
#app.run(host="0.0.0.0", port=7860)
|
customFunctions.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.optim as optim
|
| 7 |
+
#from transformers import BertTokenizer, BertModel
|
| 8 |
+
from sklearn.metrics import accuracy_score, f1_score, classification_report
|
| 9 |
+
import sklearn_crfsuite
|
| 10 |
+
from sklearn_crfsuite import metrics
|
| 11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 12 |
+
from gensim.models import Word2Vec
|
| 13 |
+
from sklearn.pipeline import Pipeline
|
| 14 |
+
from sklearn.preprocessing import LabelEncoder
|
| 15 |
+
from torch.utils.data import Dataset, DataLoader
|
| 16 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 17 |
+
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
|
| 18 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
EMBEDDING_DIM = 100
|
| 23 |
+
PAD_VALUE= -1
|
| 24 |
+
MAX_LENGTH = 376
|
| 25 |
+
EMBEDDING_DIM = 100
|
| 26 |
+
BATCH_SIZE = 16
|
| 27 |
+
|
| 28 |
+
class preprocess_sentences():
|
| 29 |
+
def __init__(self):
|
| 30 |
+
pass
|
| 31 |
+
|
| 32 |
+
def fit(self, X, y=None):
|
| 33 |
+
print('PREPROCESSING')
|
| 34 |
+
return self
|
| 35 |
+
|
| 36 |
+
def transform(self, X):
|
| 37 |
+
# X = train['tokens'], y =
|
| 38 |
+
sentences = X.apply(lambda x: x.tolist()).tolist()
|
| 39 |
+
print('--> Preprocessing complete \n', flush=True)
|
| 40 |
+
return sentences
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class Word2VecTransformer():
|
| 45 |
+
def __init__(self, vector_size = 100, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
|
| 46 |
+
self.model = None
|
| 47 |
+
self.vector_size = vector_size
|
| 48 |
+
self.window = window
|
| 49 |
+
self.min_count = min_count
|
| 50 |
+
self.workers = workers
|
| 51 |
+
self.embedding_dim = embedding_dim
|
| 52 |
+
|
| 53 |
+
def fit(self, X, y):
|
| 54 |
+
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
|
| 55 |
+
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
|
| 56 |
+
print('WORD2VEC:', flush=True)
|
| 57 |
+
# This fits the word2vec model
|
| 58 |
+
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
|
| 59 |
+
, min_count=self.min_count, workers=self.workers)
|
| 60 |
+
print('--> Word2Vec Fitted', flush=True)
|
| 61 |
+
return self
|
| 62 |
+
|
| 63 |
+
def transform(self, X):
|
| 64 |
+
# This bit should transform the sentences
|
| 65 |
+
embedded_sentences = []
|
| 66 |
+
|
| 67 |
+
for sentence in X:
|
| 68 |
+
sentence_vectors = []
|
| 69 |
+
|
| 70 |
+
for word in sentence:
|
| 71 |
+
if word in self.model.wv:
|
| 72 |
+
vec = self.model.wv[word]
|
| 73 |
+
else:
|
| 74 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
| 75 |
+
|
| 76 |
+
sentence_vectors.append(vec)
|
| 77 |
+
|
| 78 |
+
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
|
| 79 |
+
print('--> Embeddings Complete \n', flush=True)
|
| 80 |
+
|
| 81 |
+
return embedded_sentences
|
| 82 |
+
|
| 83 |
+
class Word2VecTransformer_CRF():
|
| 84 |
+
def __init__(self, vector_size = 100, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
|
| 85 |
+
self.model = None
|
| 86 |
+
self.vector_size = vector_size
|
| 87 |
+
self.window = window
|
| 88 |
+
self.min_count = min_count
|
| 89 |
+
self.workers = workers
|
| 90 |
+
self.embedding_dim = embedding_dim
|
| 91 |
+
|
| 92 |
+
def fit(self, X, y):
|
| 93 |
+
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
|
| 94 |
+
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
|
| 95 |
+
print('WORD2VEC:', flush=True)
|
| 96 |
+
# This fits the word2vec model
|
| 97 |
+
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
|
| 98 |
+
, min_count=self.min_count, workers=self.workers)
|
| 99 |
+
print('--> Word2Vec Fitted', flush=True)
|
| 100 |
+
return self
|
| 101 |
+
|
| 102 |
+
def transform(self, X):
|
| 103 |
+
# This bit should transform the sentences
|
| 104 |
+
embedded_sentences = []
|
| 105 |
+
|
| 106 |
+
for sentence in X:
|
| 107 |
+
sentence_vectors = []
|
| 108 |
+
|
| 109 |
+
for word in sentence:
|
| 110 |
+
features = {
|
| 111 |
+
'bias': 1.0,
|
| 112 |
+
'word.lower()': word.lower(),
|
| 113 |
+
'word[-3:]': word[-3:],
|
| 114 |
+
'word[-2:]': word[-2:],
|
| 115 |
+
'word.isupper()': word.isupper(),
|
| 116 |
+
'word.istitle()': word.istitle(),
|
| 117 |
+
'word.isdigit()': word.isdigit(),
|
| 118 |
+
}
|
| 119 |
+
if word in self.model.wv:
|
| 120 |
+
vec = self.model.wv[word]
|
| 121 |
+
else:
|
| 122 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
| 123 |
+
|
| 124 |
+
# https://stackoverflow.com/questions/58736548/how-to-use-word-embedding-as-features-for-crf-sklearn-crfsuite-model-training
|
| 125 |
+
for index in range(len(vec)):
|
| 126 |
+
features[f"embedding_{index}"] = vec[index]
|
| 127 |
+
|
| 128 |
+
sentence_vectors.append(features)
|
| 129 |
+
|
| 130 |
+
embedded_sentences.append(sentence_vectors)
|
| 131 |
+
print('--> Embeddings Complete \n', flush=True)
|
| 132 |
+
|
| 133 |
+
return embedded_sentences
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class tfidf(BaseEstimator, TransformerMixin):
|
| 137 |
+
def __init__(self):
|
| 138 |
+
self.model = None
|
| 139 |
+
self.embedding_dim = None
|
| 140 |
+
self.idf = None
|
| 141 |
+
self.vocab_size = None
|
| 142 |
+
self.vocab = None
|
| 143 |
+
pass
|
| 144 |
+
|
| 145 |
+
def fit(self, X, y = None):
|
| 146 |
+
print('TFIDF:', flush=True)
|
| 147 |
+
joined_sentences = [' '.join(tokens) for tokens in X]
|
| 148 |
+
self.model = TfidfVectorizer()
|
| 149 |
+
self.model.fit(joined_sentences)
|
| 150 |
+
self.vocab = self.model.vocabulary_
|
| 151 |
+
self.idf = self.model.idf_
|
| 152 |
+
self.vocab_size = len(self.vocab)
|
| 153 |
+
self.embedding_dim = self.vocab_size
|
| 154 |
+
print('--> TFIDF Fitted', flush=True)
|
| 155 |
+
return self
|
| 156 |
+
|
| 157 |
+
def transform(self, X):
|
| 158 |
+
|
| 159 |
+
embedded = []
|
| 160 |
+
for sentence in X:
|
| 161 |
+
sent_vecs = []
|
| 162 |
+
token_counts = {}
|
| 163 |
+
for word in sentence:
|
| 164 |
+
token_counts[word] = token_counts.get(word, 0) + 1
|
| 165 |
+
|
| 166 |
+
sent_len = len(sentence)
|
| 167 |
+
for word in sentence:
|
| 168 |
+
vec = np.zeros(self.vocab_size)
|
| 169 |
+
if word in self.vocab:
|
| 170 |
+
tf = token_counts[word] / sent_len
|
| 171 |
+
token_idx = self.vocab[word]
|
| 172 |
+
vec[token_idx] = tf * self.idf[token_idx]
|
| 173 |
+
sent_vecs.append(vec)
|
| 174 |
+
embedded.append(torch.tensor(sent_vecs, dtype=torch.float32))
|
| 175 |
+
print('--> Embeddings Complete \n', flush=True)
|
| 176 |
+
print(embedded[0][0], flush=True)
|
| 177 |
+
print('Those were the embeddings', flush=True)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
return embedded
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class BiLSTM_NER(nn.Module):
|
| 184 |
+
def __init__(self,input_dim, hidden_dim, tagset_size):
|
| 185 |
+
super(BiLSTM_NER, self).__init__()
|
| 186 |
+
|
| 187 |
+
# Embedding layer
|
| 188 |
+
#Freeze= false means that it will fine tune
|
| 189 |
+
#self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze = False, padding_idx=-1)
|
| 190 |
+
|
| 191 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
|
| 192 |
+
self.fc = nn.Linear(hidden_dim*2, tagset_size)
|
| 193 |
+
|
| 194 |
+
def forward(self, sentences):
|
| 195 |
+
#embeds = self.embedding(sentences)
|
| 196 |
+
lstm_out, _ = self.lstm(sentences)
|
| 197 |
+
tag_scores = self.fc(lstm_out)
|
| 198 |
+
|
| 199 |
+
return tag_scores
|
| 200 |
+
|
| 201 |
+
# Define the FeedForward NN Model
|
| 202 |
+
class FeedForwardNN_NER(nn.Module):
|
| 203 |
+
def __init__(self, embedding_dim, hidden_dim, tagset_size):
|
| 204 |
+
super(FeedForwardNN_NER, self).__init__()
|
| 205 |
+
self.fc1 = nn.Linear(embedding_dim, hidden_dim)
|
| 206 |
+
self.relu = nn.ReLU()
|
| 207 |
+
self.fc2 = nn.Linear(hidden_dim, tagset_size)
|
| 208 |
+
|
| 209 |
+
def forward(self, x):
|
| 210 |
+
# x: (batch_size, seq_length, embedding_dim)
|
| 211 |
+
x = self.fc1(x) # (batch_size, seq_length, hidden_dim)
|
| 212 |
+
x = self.relu(x)
|
| 213 |
+
logits = self.fc2(x) # (batch_size, seq_length, tagset_size)
|
| 214 |
+
return logits
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def pad(batch):
|
| 218 |
+
# batch is a list of (X, y) pairs
|
| 219 |
+
X_batch, y_batch = zip(*batch)
|
| 220 |
+
|
| 221 |
+
# Convert to tensors
|
| 222 |
+
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in X_batch]
|
| 223 |
+
y_batch = [torch.tensor(seq, dtype=torch.long) for seq in y_batch]
|
| 224 |
+
|
| 225 |
+
# Pad sequences
|
| 226 |
+
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
|
| 227 |
+
y_padded = pad_sequence(y_batch, batch_first=True, padding_value=PAD_VALUE)
|
| 228 |
+
|
| 229 |
+
return X_padded, y_padded
|
| 230 |
+
|
| 231 |
+
def pred_pad(batch):
|
| 232 |
+
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in batch]
|
| 233 |
+
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
|
| 234 |
+
return X_padded
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class Ner_Dataset(Dataset):
|
| 238 |
+
def __init__(self, X, y):
|
| 239 |
+
self.X = X
|
| 240 |
+
self.y = y
|
| 241 |
+
|
| 242 |
+
def __len__(self):
|
| 243 |
+
return len(self.X)
|
| 244 |
+
|
| 245 |
+
def __getitem__(self, idx):
|
| 246 |
+
return self.X[idx], self.y[idx]
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
class LSTM(BaseEstimator, ClassifierMixin):
|
| 252 |
+
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
|
| 253 |
+
self.embedding_dim = embedding_dim
|
| 254 |
+
self.hidden_dim = hidden_dim
|
| 255 |
+
self.epochs = epochs
|
| 256 |
+
self.learning_rate = learning_rate
|
| 257 |
+
self.tag2idx = tag2idx
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def fit(self, embedded, encoded_tags):
|
| 262 |
+
print('LSTM:', flush=True)
|
| 263 |
+
data = Ner_Dataset(embedded, encoded_tags)
|
| 264 |
+
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
|
| 265 |
+
|
| 266 |
+
self.model = self.train_LSTM(train_loader)
|
| 267 |
+
print('--> LSTM trained', flush=True)
|
| 268 |
+
return self
|
| 269 |
+
|
| 270 |
+
def predict(self, X):
|
| 271 |
+
# Switch to evaluation mode
|
| 272 |
+
|
| 273 |
+
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
|
| 274 |
+
|
| 275 |
+
self.model.eval()
|
| 276 |
+
predictions = []
|
| 277 |
+
|
| 278 |
+
# Iterate through test data
|
| 279 |
+
with torch.no_grad():
|
| 280 |
+
for X_batch in test_loader:
|
| 281 |
+
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 282 |
+
|
| 283 |
+
tag_scores = self.model(X_batch)
|
| 284 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
| 285 |
+
|
| 286 |
+
# Flatten the tensors to compare word-by-word
|
| 287 |
+
flattened_pred = predicted_tags.view(-1)
|
| 288 |
+
predictions.append(flattened_pred.cpu().numpy())
|
| 289 |
+
|
| 290 |
+
predictions = np.concatenate(predictions)
|
| 291 |
+
return predictions
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def train_LSTM(self, train_loader, input_dim=None, hidden_dim=128, epochs=5, learning_rate=0.001):
|
| 295 |
+
|
| 296 |
+
input_dim = self.embedding_dim
|
| 297 |
+
# Instantiate the lstm_model
|
| 298 |
+
lstm_model = BiLSTM_NER(input_dim, hidden_dim=hidden_dim, tagset_size=len(self.tag2idx))
|
| 299 |
+
lstm_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 300 |
+
|
| 301 |
+
# Loss function and optimizer
|
| 302 |
+
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
|
| 303 |
+
optimizer = optim.Adam(lstm_model.parameters(), lr=learning_rate)
|
| 304 |
+
print('--> Training LSTM')
|
| 305 |
+
|
| 306 |
+
# Training loop
|
| 307 |
+
for epoch in range(epochs):
|
| 308 |
+
total_loss = 0
|
| 309 |
+
total_correct = 0
|
| 310 |
+
total_words = 0
|
| 311 |
+
lstm_model.train() # Set model to training mode
|
| 312 |
+
|
| 313 |
+
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
| 314 |
+
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 315 |
+
|
| 316 |
+
# Zero gradients
|
| 317 |
+
optimizer.zero_grad()
|
| 318 |
+
|
| 319 |
+
# Forward pass
|
| 320 |
+
tag_scores = lstm_model(X_batch)
|
| 321 |
+
|
| 322 |
+
# Reshape and compute loss (ignore padded values)
|
| 323 |
+
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
|
| 324 |
+
|
| 325 |
+
# Backward pass and optimization
|
| 326 |
+
loss.backward()
|
| 327 |
+
optimizer.step()
|
| 328 |
+
|
| 329 |
+
total_loss += loss.item()
|
| 330 |
+
|
| 331 |
+
# Compute accuracy for this batch
|
| 332 |
+
# Get the predicted tags (index of max score)
|
| 333 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
| 334 |
+
|
| 335 |
+
# Flatten the tensors to compare word-by-word
|
| 336 |
+
flattened_pred = predicted_tags.view(-1)
|
| 337 |
+
flattened_true = y_batch.view(-1)
|
| 338 |
+
|
| 339 |
+
# Exclude padding tokens from the accuracy calculation
|
| 340 |
+
mask = flattened_true != PAD_VALUE
|
| 341 |
+
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
|
| 342 |
+
|
| 343 |
+
# Count the total words in the batch (ignoring padding)
|
| 344 |
+
total_words_batch = mask.sum().item()
|
| 345 |
+
|
| 346 |
+
# Update total correct and total words
|
| 347 |
+
total_correct += correct
|
| 348 |
+
total_words += total_words_batch
|
| 349 |
+
|
| 350 |
+
avg_loss = total_loss / len(train_loader)
|
| 351 |
+
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
|
| 352 |
+
|
| 353 |
+
print(f' ==> Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
|
| 354 |
+
|
| 355 |
+
return lstm_model
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class FeedforwardNN(BaseEstimator, ClassifierMixin):
|
| 359 |
+
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
|
| 360 |
+
self.embedding_dim = embedding_dim
|
| 361 |
+
self.hidden_dim = hidden_dim
|
| 362 |
+
self.epochs = epochs
|
| 363 |
+
self.learning_rate = learning_rate
|
| 364 |
+
self.tag2idx = tag2idx
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def fit(self, embedded, encoded_tags):
|
| 369 |
+
print('Feed Forward NN: ', flush=True)
|
| 370 |
+
data = Ner_Dataset(embedded, encoded_tags)
|
| 371 |
+
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
|
| 372 |
+
|
| 373 |
+
self.model = self.train_FF(train_loader)
|
| 374 |
+
print('--> Feed Forward trained', flush=True)
|
| 375 |
+
return self
|
| 376 |
+
|
| 377 |
+
def predict(self, X):
|
| 378 |
+
# Switch to evaluation mode
|
| 379 |
+
|
| 380 |
+
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
|
| 381 |
+
|
| 382 |
+
self.model.eval()
|
| 383 |
+
predictions = []
|
| 384 |
+
|
| 385 |
+
# Iterate through test data
|
| 386 |
+
with torch.no_grad():
|
| 387 |
+
for X_batch in test_loader:
|
| 388 |
+
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 389 |
+
|
| 390 |
+
tag_scores = self.model(X_batch)
|
| 391 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
| 392 |
+
|
| 393 |
+
# Flatten the tensors to compare word-by-word
|
| 394 |
+
flattened_pred = predicted_tags.view(-1)
|
| 395 |
+
predictions.append(flattened_pred.cpu().numpy())
|
| 396 |
+
|
| 397 |
+
predictions = np.concatenate(predictions)
|
| 398 |
+
return predictions
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def train_FF(self, train_loader, input_dim=None, hidden_dim=128, epochs=5, learning_rate=0.001):
|
| 402 |
+
|
| 403 |
+
input_dim = self.embedding_dim
|
| 404 |
+
# Instantiate the lstm_model
|
| 405 |
+
ff_model = FeedForwardNN_NER(self.embedding_dim, hidden_dim=hidden_dim, tagset_size=len(self.tag2idx))
|
| 406 |
+
ff_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 407 |
+
|
| 408 |
+
# Loss function and optimizer
|
| 409 |
+
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
|
| 410 |
+
optimizer = optim.Adam(ff_model.parameters(), lr=learning_rate)
|
| 411 |
+
print('--> Training FF')
|
| 412 |
+
|
| 413 |
+
# Training loop
|
| 414 |
+
for epoch in range(epochs):
|
| 415 |
+
total_loss = 0
|
| 416 |
+
total_correct = 0
|
| 417 |
+
total_words = 0
|
| 418 |
+
ff_model.train() # Set model to training mode
|
| 419 |
+
|
| 420 |
+
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
| 421 |
+
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 422 |
+
|
| 423 |
+
# Zero gradients
|
| 424 |
+
optimizer.zero_grad()
|
| 425 |
+
|
| 426 |
+
# Forward pass
|
| 427 |
+
tag_scores = ff_model(X_batch)
|
| 428 |
+
|
| 429 |
+
# Reshape and compute loss (ignore padded values)
|
| 430 |
+
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
|
| 431 |
+
|
| 432 |
+
# Backward pass and optimization
|
| 433 |
+
loss.backward()
|
| 434 |
+
optimizer.step()
|
| 435 |
+
|
| 436 |
+
total_loss += loss.item()
|
| 437 |
+
|
| 438 |
+
# Compute accuracy for this batch
|
| 439 |
+
# Get the predicted tags (index of max score)
|
| 440 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
| 441 |
+
|
| 442 |
+
# Flatten the tensors to compare word-by-word
|
| 443 |
+
flattened_pred = predicted_tags.view(-1)
|
| 444 |
+
flattened_true = y_batch.view(-1)
|
| 445 |
+
|
| 446 |
+
# Exclude padding tokens from the accuracy calculation
|
| 447 |
+
mask = flattened_true != PAD_VALUE
|
| 448 |
+
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
|
| 449 |
+
|
| 450 |
+
# Count the total words in the batch (ignoring padding)
|
| 451 |
+
total_words_batch = mask.sum().item()
|
| 452 |
+
|
| 453 |
+
# Update total correct and total words
|
| 454 |
+
total_correct += correct
|
| 455 |
+
total_words += total_words_batch
|
| 456 |
+
|
| 457 |
+
avg_loss = total_loss / len(train_loader)
|
| 458 |
+
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
|
| 459 |
+
|
| 460 |
+
print(f' ==> Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
|
| 461 |
+
|
| 462 |
+
return ff_model
|
| 463 |
+
|
| 464 |
+
crf = sklearn_crfsuite.CRF(
|
| 465 |
+
algorithm='lbfgs',
|
| 466 |
+
c1=0.1,
|
| 467 |
+
c2=0.1,
|
| 468 |
+
max_iterations=100,
|
| 469 |
+
all_possible_transitions=True)
|
| 470 |
+
|
performance_test.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import time
|
| 3 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 4 |
+
import csv
|
| 5 |
+
|
| 6 |
+
NUM_REQUESTS = 5
|
| 7 |
+
CONCURRENT_THREADS = 10
|
| 8 |
+
URL = "http://localhost:5000/"
|
| 9 |
+
|
| 10 |
+
def send_request():
|
| 11 |
+
data = {
|
| 12 |
+
'search': "A MRI, magnetic resonance imaging, scan is a very useful diagnosis tool.",
|
| 13 |
+
'pipeline_select': '1'
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
start_time = time.time()
|
| 17 |
+
try:
|
| 18 |
+
response = requests.post(URL, data=data)
|
| 19 |
+
elapsed = time.time() - start_time
|
| 20 |
+
if response.status_code != 200:
|
| 21 |
+
print(f"Error {response.status_code}: {response.text[:100]}")
|
| 22 |
+
return response.status_code, elapsed
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print("Request failed:", e)
|
| 25 |
+
return 500, 0 # Treat exceptions as failures
|
| 26 |
+
|
| 27 |
+
def run_stress_test():
|
| 28 |
+
results = []
|
| 29 |
+
|
| 30 |
+
with ThreadPoolExecutor(max_workers=CONCURRENT_THREADS) as executor:
|
| 31 |
+
futures = [executor.submit(send_request) for _ in range(NUM_REQUESTS)]
|
| 32 |
+
for future in futures:
|
| 33 |
+
results.append(future.result())
|
| 34 |
+
|
| 35 |
+
successes = sum(1 for r in results if r[0] == 200)
|
| 36 |
+
failures = NUM_REQUESTS - successes
|
| 37 |
+
avg_time = sum(r[1] for r in results) / NUM_REQUESTS
|
| 38 |
+
max_time = max(r[1] for r in results)
|
| 39 |
+
min_time = min(r[1] for r in results)
|
| 40 |
+
|
| 41 |
+
print(f"\n=== Stress Test Results ===")
|
| 42 |
+
print(f"Total Requests: {NUM_REQUESTS}")
|
| 43 |
+
print(f"Concurrency Level: {CONCURRENT_THREADS}")
|
| 44 |
+
print(f"Successes: {successes}")
|
| 45 |
+
print(f"Failures: {failures}")
|
| 46 |
+
print(f"Avg Time: {avg_time:.3f}s")
|
| 47 |
+
print(f"Min Time: {min_time:.3f}s")
|
| 48 |
+
print(f"Max Time: {max_time:.3f}s")
|
| 49 |
+
|
| 50 |
+
return [NUM_REQUESTS, CONCURRENT_THREADS, avg_time, max_time]
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
# Open the CSV file for writing the summary results
|
| 54 |
+
with open('stress_test_results.csv', 'w', newline='') as csvfile:
|
| 55 |
+
writer = csv.writer(csvfile)
|
| 56 |
+
writer.writerow(['Total Requests', 'Concurrency Level', 'Avg Time', 'Max Time'])
|
| 57 |
+
|
| 58 |
+
for users in [1, 5, 10, 20, 50, 100]:
|
| 59 |
+
CONCURRENT_THREADS = users
|
| 60 |
+
NUM_REQUESTS = users * 5
|
| 61 |
+
result = run_stress_test()
|
| 62 |
+
|
| 63 |
+
writer.writerow(result)
|
| 64 |
+
|