Update app.py
Browse files
app.py
CHANGED
|
@@ -422,7 +422,7 @@ with gr.Blocks() as demo:
|
|
| 422 |
|
| 423 |
img_input = gr.ImageEditor()
|
| 424 |
model_select = gr.Dropdown(
|
| 425 |
-
["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-
|
| 426 |
)
|
| 427 |
with gr.Row():
|
| 428 |
with gr.Column():
|
|
@@ -444,7 +444,14 @@ with gr.Blocks() as demo:
|
|
| 444 |
)
|
| 445 |
# with gr.Column():
|
| 446 |
with gr.Group():
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
with gr.Accordion("Interactive segmentation usage",open=False):
|
| 449 |
gr.Markdown(
|
| 450 |
'For interactive segmentation:<br />\
|
|
@@ -452,13 +459,7 @@ with gr.Blocks() as demo:
|
|
| 452 |
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
|
| 453 |
3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
|
| 454 |
)
|
| 455 |
-
|
| 456 |
-
gr.Markdown(
|
| 457 |
-
'GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
|
| 458 |
-
1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
|
| 459 |
-
2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
|
| 460 |
-
3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
|
| 461 |
-
)
|
| 462 |
img_showbox = gr.Image(label="visual prompt area preview")
|
| 463 |
|
| 464 |
|
|
|
|
| 422 |
|
| 423 |
img_input = gr.ImageEditor()
|
| 424 |
model_select = gr.Dropdown(
|
| 425 |
+
["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Plus (SwinL)" , multiselect=False, label="Model",
|
| 426 |
)
|
| 427 |
with gr.Row():
|
| 428 |
with gr.Column():
|
|
|
|
| 444 |
)
|
| 445 |
# with gr.Column():
|
| 446 |
with gr.Group():
|
| 447 |
+
with gr.Accordion("Text based detection usage",open=False):
|
| 448 |
+
gr.Markdown(
|
| 449 |
+
'Press the "Detect & Segment" button directly to try the effect using the COCO category.<br />\
|
| 450 |
+
GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
|
| 451 |
+
1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
|
| 452 |
+
2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
|
| 453 |
+
3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
|
| 454 |
+
)
|
| 455 |
with gr.Accordion("Interactive segmentation usage",open=False):
|
| 456 |
gr.Markdown(
|
| 457 |
'For interactive segmentation:<br />\
|
|
|
|
| 459 |
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
|
| 460 |
3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
|
| 461 |
)
|
| 462 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
img_showbox = gr.Image(label="visual prompt area preview")
|
| 464 |
|
| 465 |
|