File size: 24,680 Bytes
b2be217
c67211a
b2be217
 
8ce917e
 
 
 
b2be217
 
 
 
 
 
 
 
8ce917e
b2be217
 
 
5ef00f9
 
b2be217
5ef00f9
b2be217
5ef00f9
b2be217
 
5ef00f9
 
b2be217
 
8ce917e
b2be217
 
 
 
c67211a
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67211a
b2be217
 
 
 
c67211a
b2be217
 
 
 
a8f289a
 
8ce917e
b2be217
8ce917e
b2be217
 
 
b641956
b2be217
 
 
 
 
 
 
 
 
b641956
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616fa35
 
b2be217
 
 
 
 
 
b641956
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09d263
 
 
 
 
 
 
 
 
b2be217
 
 
 
 
081fbb6
 
b2be217
b641956
b2be217
 
dbfdde7
 
d09d263
 
dbfdde7
 
b2be217
dbfdde7
b641956
8ce917e
d54ac4b
 
 
 
 
 
 
 
 
 
 
b2be217
d54ac4b
 
 
 
b2be217
 
d54ac4b
b2be217
 
 
d54ac4b
b2be217
 
d54ac4b
 
 
 
 
 
 
c67211a
b2be217
dbfdde7
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67211a
b2be217
dbfdde7
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f289a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2be217
 
dbfdde7
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce917e
891cd86
 
 
 
 
b2be217
d54ac4b
 
 
 
 
 
 
5f05ecc
d54ac4b
 
 
 
 
 
 
dbfdde7
d54ac4b
923aa33
fc07c67
 
 
 
 
 
 
bc45bb2
 
 
 
dbfdde7
d54ac4b
bc45bb2
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
079a4c3
b2be217
 
c67211a
b2be217
 
 
 
 
 
 
 
 
079a4c3
b2be217
 
c67211a
b2be217
 
 
 
 
c67211a
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67211a
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081fbb6
b2be217
 
 
 
081fbb6
b2be217
081fbb6
c67211a
b2be217
081fbb6
b2be217
 
c67211a
b2be217
8c07f67
 
 
 
 
 
 
 
 
 
 
b2be217
 
8c07f67
b2be217
 
8c07f67
b2be217
 
 
 
 
8ce917e
 
b2be217
 
081fbb6
b2be217
8ce917e
 
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce917e
5a7f158
b2be217
 
dbfdde7
 
 
a8f289a
dbfdde7
 
 
 
 
 
 
 
 
 
b2be217
 
b641956
8c07f67
 
 
616fa35
8c07f67
 
 
891cd86
 
 
081fbb6
891cd86
 
 
b2be217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67211a
b2be217
 
 
 
081fbb6
b2be217
 
 
 
 
 
 
 
 
 
 
081fbb6
b2be217
 
 
 
081fbb6
b2be217
 
8ce917e
 
 
dbfdde7
5a7f158
b2be217
 
 
 
dbfdde7
b2be217
2e4c141
8ce917e
 
c67211a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import re
import math
import numpy as np
import traceback

# Load LoRAs from JSON file
def load_loras_from_file():
    """Load LoRA configurations from external JSON file."""
    try:
        with open('loras.json', 'r', encoding='utf-8') as f:
            return json.load(f)
    except FileNotFoundError:
        print("Warning: loras.json file not found. Using empty list.")
        return []
    except json.JSONDecodeError as e:
        print(f"Error parsing loras.json: {e}")
        return []

# Load the LoRAs
loras = load_loras_from_file()

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "Qwen/Qwen-Image"

# Scheduler configuration from the Qwen-Image-Lightning repository
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
    base_model, scheduler=scheduler, torch_dtype=dtype
).to(device)

# Lightning LoRA info (no global state)
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors"
LIGHTNING8_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V2.0-bf16.safetensors"
LIGHTNING_FP8_4STEPS_LORA_WEIGHT = "Qwen-Image-fp8-e4m3fn-Lightning-4steps-V1.0-bf16.safetensors"


MAX_SEED = np.iinfo(np.int32).max

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def get_image_size(aspect_ratio):
    """Converts aspect ratio string to width, height tuple."""
    if aspect_ratio == "1:1":
        return 1024, 1024
    elif aspect_ratio == "16:9":
        return 1152, 640
    elif aspect_ratio == "9:16":
        return 640, 1152
    elif aspect_ratio == "4:3":
        return 1024, 768
    elif aspect_ratio == "3:4":
        return 768, 1024
    elif aspect_ratio == "3:2":
        return 1024, 688
    elif aspect_ratio == "2:3":
        return 688, 1024
    elif aspect_ratio == "4:1":
        return 2560, 640
    elif aspect_ratio == "3:1":
        return 1920, 640
    elif aspect_ratio == "2:1":
        return 1280, 640
    else:
        return 1024, 1024

def update_selection(evt: gr.SelectData, aspect_ratio):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    
    # Get model card examples
    examples_list = []
    try:
        model_card = ModelCard.load(lora_repo)
        widget_data = model_card.data.get("widget", [])
        if widget_data and len(widget_data) > 0:
            # Get examples from widget data
            for example in widget_data[:4]:
                if "output" in example and "url" in example["output"]:
                    image_url = f"https://huggingface.co/{lora_repo}/resolve/main/{example['output']['url']}"
                    prompt_text = example.get("text", "")
                    examples_list.append([prompt_text])
    except Exception as e:
        print(f"Could not load model card for {lora_repo}: {e}")
    
    # Update aspect ratio if specified in LoRA config
    # if "aspect" in selected_lora:
    #     if selected_lora["aspect"] == "portrait":
    #         aspect_ratio = "9:16"
    #     elif selected_lora["aspect"] == "landscape":
    #         aspect_ratio = "16:9"
    #     elif selected_lora["aspect"] == "square":
    #         aspect_ratio = "1:1"
    #     else:
    #         aspect_ratio = selected_lora["aspect"]
    
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        aspect_ratio,
        gr.update(interactive=True)
    )

def handle_speed_mode(speed_mode):
    """Update UI based on speed/quality toggle."""
    if speed_mode == "light 4":
        return gr.update(value="Light mode (4 steps) selected"), 4, 1.0
    elif speed_mode == "light 4 fp8":
        return gr.update(value="Light mode (4 steps fp8) selected"), 4, 1.0
    elif speed_mode == "light 8":
        return gr.update(value="Light mode (8 steps) selected"), 8, 1.0
    else: 
        return gr.update(value="Normal quality (45 steps) selected"), 45, 3.5

@spaces.GPU(duration=70)
def generate_image(
    prompt_mash,
    steps,
    seed,
    cfg_scale,
    width,
    height,
    lora_scale,
    negative_prompt="",
    num_images=1,
):
    pipe.to("cuda")

    # Seeds y generadores (seed, seed+100, ...)
    seeds = [seed + (i * 100) for i in range(num_images)]
    generators = [torch.Generator(device="cuda").manual_seed(s) for s in seeds]
    
    with calculateDuration("Generating image"):
        result = pipe(
            prompt=prompt_mash,
            negative_prompt=negative_prompt,
            num_inference_steps=steps,
            true_cfg_scale=cfg_scale,  # Qwen-Image
            width=width,
            height=height,
            num_images_per_prompt=num_images,  # 👈 una sola vez
            generator=generators,              #    lista de generators
        )

    # Devolver SIEMPRE lista de (imagen, seed)
    images = [(img, s) for img, s in zip(result.images, seeds)]
    return images

@spaces.GPU(duration=70)
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, quality_multiplier, quantity, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")
    
    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    
    # Prepare prompt with trigger word
    if trigger_word:
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    # Always unload any existing LoRAs first to avoid conflicts
    with calculateDuration("Unloading existing LoRAs"):
        pipe.unload_lora_weights()

    # Load LoRAs based on speed mode
    if speed_mode == "light 4":
        with calculateDuration("Loading Lightning LoRA and style LoRA"):
            # Load Lightning LoRA first
            pipe.load_lora_weights(
                LIGHTNING_LORA_REPO, 
                weight_name=LIGHTNING_LORA_WEIGHT,
                adapter_name="lightning"
            )
            
            # Load the selected style LoRA
            weight_name = selected_lora.get("weights", None)
            pipe.load_lora_weights(
                lora_path, 
                weight_name=weight_name, 
                low_cpu_mem_usage=True,
                adapter_name="style"
            )
            
            # Set both adapters active with their weights
            pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
    elif speed_mode == "light 4 fp8":
        with calculateDuration("Loading Lightning LoRA and style LoRA"):
            # Load Lightning LoRA first
            pipe.load_lora_weights(
                LIGHTNING_LORA_REPO, 
                weight_name=LIGHTNING_FP8_4STEPS_LORA_WEIGHT,
                adapter_name="lightning"
            )
            
            # Load the selected style LoRA
            weight_name = selected_lora.get("weights", None)
            pipe.load_lora_weights(
                lora_path, 
                weight_name=weight_name, 
                low_cpu_mem_usage=True,
                adapter_name="style"
            )
            
            # Set both adapters active with their weights
            pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
    elif speed_mode == "light 8":
        with calculateDuration("Loading Lightning LoRA and style LoRA"):
            # Load Lightning LoRA first
            pipe.load_lora_weights(
                LIGHTNING_LORA_REPO, 
                weight_name=LIGHTNING8_LORA_WEIGHT,
                adapter_name="lightning"
            )
            
            # Load the selected style LoRA
            weight_name = selected_lora.get("weights", None)
            pipe.load_lora_weights(
                lora_path, 
                weight_name=weight_name, 
                low_cpu_mem_usage=True,
                adapter_name="style"
            )
            
            # Set both adapters active with their weights
            pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
    else:
        # Quality mode - only load the style LoRA
        with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
            weight_name = selected_lora.get("weights", None)
            pipe.load_lora_weights(
                lora_path, 
                weight_name=weight_name, 
                low_cpu_mem_usage=True,
                adapter_name="style"
            )
            pipe.set_adapters(["style"], adapter_weights=[lora_scale])
                
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    # Get image dimensions from aspect ratio
    width, height = get_image_size(aspect_ratio)

    # Apply quality multiplier
    multiplier = float(quality_multiplier.replace('x', ''))
    width = int(width * multiplier)
    height = int(height * multiplier)
    
    # quantity es índice (0..3) -> cantidad (1..4)
    num_images = int(quantity) + 1

    # Generar
    pairs = generate_image(
        prompt_mash,
        steps,
        seed,
        cfg_scale,
        width,
        height,
        lora_scale,
        negative_prompt="",     # ajustá si usás uno real
        num_images=num_images,
    )

    # Formatear para Gallery: (img, "Seed: N")
    #images_for_gallery = [(img, f"Seed: {s}") for (img, s) in pairs]
    # images_for_gallery = [
    #     (
    #         img,
    #         s
    #     )
    #     for (img, s) in pairs
    # ]
    images_for_gallery = [
        (img, str(s))
        for (img, s) in pairs
    ]

    # Debe devolver DOS valores porque outputs=[result, seed]
    return images_for_gallery, seed

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) != 2:
        raise Exception("Invalid Hugging Face repository link format.")

    print(f"Repository attempted: {split_link}")
    
    # Load model card
    model_card = ModelCard.load(link)
    base_model = model_card.data.get("base_model")
    print(f"Base model: {base_model}")

    # Validate model type (for Qwen-Image)
    acceptable_models = {"Qwen/Qwen-Image"}
    
    models_to_check = base_model if isinstance(base_model, list) else [base_model]
    
    if not any(model in acceptable_models for model in models_to_check):
        raise Exception("Not a Qwen-Image LoRA!")
        
    # Extract image and trigger word
    image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
    trigger_word = model_card.data.get("instance_prompt", "")
    image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None

    # Initialize Hugging Face file system
    fs = HfFileSystem()
    try:
        list_of_files = fs.ls(link, detail=False)
        
        # Find safetensors file
        safetensors_name = None
        for file in list_of_files:
            filename = file.split("/")[-1]
            if filename.endswith(".safetensors"):
                safetensors_name = filename
                break

        if not safetensors_name:
            raise Exception("No valid *.safetensors file found in the repository.")

    except Exception as e:
        print(e)
        raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
    
    return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    print(f"Checking a custom model on: {link}")
    
    if link.endswith('.safetensors'):
        if 'huggingface.co' in link:
            parts = link.split('/')
            try:
                hf_index = parts.index('huggingface.co')
                username = parts[hf_index + 1]
                repo_name = parts[hf_index + 2]
                repo = f"{username}/{repo_name}"
                
                safetensors_name = parts[-1]
                
                try:
                    model_card = ModelCard.load(repo)
                    trigger_word = model_card.data.get("instance_prompt", "")
                    image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
                    image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
                except:
                    trigger_word = ""
                    image_url = None
                
                return repo_name, repo, safetensors_name, trigger_word, image_url
            except:
                raise Exception("Invalid safetensors URL format")
    
    if link.startswith("https://"):
        if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            
            # Get model card examples for custom LoRA
            model_card_examples = ""
            try:
                model_card = ModelCard.load(repo)
                widget_data = model_card.data.get("widget", [])
                if widget_data and len(widget_data) > 0:
                    examples_html = '<div style="margin-top: 10px;">'
                    examples_html += '<h4 style="margin-bottom: 8px; font-size: 0.9em;">Sample Images:</h4>'
                    examples_html += '<div style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 8px;">'
                    
                    for i, example in enumerate(widget_data[:4]):
                        if "output" in example and "url" in example["output"]:
                            image_url = f"https://huggingface.co/{repo}/resolve/main/{example['output']['url']}"
                            caption = example.get("text", f"Example {i+1}")
                            examples_html += f'''
                            <div style="text-align: center;">
                                <img src="{image_url}" style="width: 100%; height: auto; border-radius: 4px;" />
                                <p style="font-size: 0.7em; margin: 2px 0;">{caption[:30]}{'...' if len(caption) > 30 else ''}</p>
                            </div>
                            '''
                    
                    examples_html += '</div></div>'
                    model_card_examples = examples_html
            except Exception as e:
                print(f"Could not load model card examples for custom LoRA: {e}")
            
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
              {model_card_examples}
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if existing_item_index is None:
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                loras.append(new_item)
                existing_item_index = len(loras) - 1  # Get the actual index after adding
                
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word, gr.update(interactive=True)
        except Exception as e:
            full_traceback = traceback.format_exc()
            print(f"Full traceback:\n{full_traceback}")
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, "", gr.update(interactive=False)
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "", gr.update(interactive=False)

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "", gr.update(interactive=False)

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
'''

with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
    title = gr.HTML(
        """<img src=\"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png\" alt=\"Qwen-Image\" style=\"width: 280px; margin: 0 auto\">        
        <h3 style=\"margin-top: -10px\">LoRA🦜 ChoquinLabs Explorer</h3>""",
        elem_id="title",
    )
    
    selected_index = gr.State(None)
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn", interactive=False)
    
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            examples_component = gr.Examples(examples=[], inputs=[prompt], label="Sample Prompts", visible=False)
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
                gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
        
        with gr.Column():
            result = gr.Gallery(label="Generated Images", show_label=True, elem_id="result_gallery")
            
            with gr.Row():
                with gr.Column():
                    speed_mode = gr.Radio(
                        label="Generation Mode",
                        choices=["light 4", "light 4 fp8", "light 8", "normal"],
                        value="light 4",
                        info="'light' modes use Lightning LoRA for faster generation"
                    )
                with gr.Column():
                    quantity = gr.Radio(
                        label="Quantity",
                        choices=["1", "2", "3", "4"],
                        value="1",
                        type="index"
                    )
            
            speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")

            with gr.Row():
                aspect_ratio = gr.Radio(
                    label="Aspect Ratio",
                    choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3", "4:1", "3:1", "2:1"],
                    value="16:9"
                )

            with gr.Row():
                quality_multiplier = gr.Radio(
                    label="Quality (Size Multiplier)",
                    choices=["0.5x", "1x", "1.5x"],
                    value="1x"
                )

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(
                        label="Guidance Scale (True CFG)", 
                        minimum=1.0, 
                        maximum=5.0, 
                        step=0.1, 
                        value=3.5,
                        info="Lower for speed mode, higher for quality"
                    )
                    steps = gr.Slider(
                        label="Steps", 
                        minimum=4, 
                        maximum=50, 
                        step=1, 
                        value=45,
                        info="Automatically set by speed mode"
                    )
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=1.0)

    # Event handlers
    gallery.select(
        update_selection,
        inputs=[aspect_ratio],
        outputs=[prompt, selected_info, selected_index, aspect_ratio, generate_button]
    )
    
    speed_mode.change(
        handle_speed_mode,
        inputs=[speed_mode],
        outputs=[speed_status, steps, cfg_scale]
    )
    
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt, generate_button]
    )
    
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora, generate_button]
    )
    
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, quality_multiplier, quantity],
        outputs=[result, seed]
    )
 
    app.load(
        fn=handle_speed_mode,
        inputs=[gr.State("light 4")],
        outputs=[speed_status, steps, cfg_scale]
    )

app.queue()
app.launch()