Upload 2 files
Browse files- Test_SemanticSearch.py +149 -0
- requirements.txt +15 -3
Test_SemanticSearch.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import pickle
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
import gdown
|
| 9 |
+
import torch
|
| 10 |
+
from sentence_transformers import SentenceTransformer, util
|
| 11 |
+
|
| 12 |
+
# -------------------------------
|
| 13 |
+
# Setup
|
| 14 |
+
# -------------------------------
|
| 15 |
+
st.set_page_config(page_title="Alibaba Semantic Search", layout="wide")
|
| 16 |
+
|
| 17 |
+
MODEL_DIR = Path("models")
|
| 18 |
+
MODEL_DIR.mkdir(exist_ok=True)
|
| 19 |
+
|
| 20 |
+
embeddings_path = MODEL_DIR / 'desc_embeddings_Alibaba_20251016.npy'
|
| 21 |
+
umap_embeddings_path = MODEL_DIR / 'descs_umap_2d_AB_20251016.npy'
|
| 22 |
+
data_file_path = MODEL_DIR / 'full_df_minus_nan_descs.csv'
|
| 23 |
+
umap_model_path = MODEL_DIR / 'umap_2d_AB_written.pkl'
|
| 24 |
+
pca_model_path = MODEL_DIR / 'pca_AB_written.pkl'
|
| 25 |
+
|
| 26 |
+
emb_ID = '1QQ_QfFTSzTLNkp6Sr4jux_ZTJjMhSyah'
|
| 27 |
+
umap_emb_ID = '1a5t5iWOAVgUmYXzrWXctATkDyx9rRF4F'
|
| 28 |
+
data_ID = '1tzM67Lg3R-rAvRtol0VGHx6zGW_tdx60'
|
| 29 |
+
umap_mod_ID = '1x8PK1Gn72YYBZ4po-0guZMUBtL8oSn1i'
|
| 30 |
+
pca_mod_ID = '1jIxBBAZOy8OAzGxBCG4jy7244Wb_TjP9'
|
| 31 |
+
|
| 32 |
+
paths = [embeddings_path, umap_embeddings_path, data_file_path, umap_model_path, pca_model_path]
|
| 33 |
+
ids = [emb_ID, umap_emb_ID, data_ID, umap_mod_ID, pca_mod_ID]
|
| 34 |
+
assets_links = [f"https://drive.google.com/uc?id={x}" for x in ids]
|
| 35 |
+
|
| 36 |
+
# -------------------------------
|
| 37 |
+
# Download + Load Data
|
| 38 |
+
# -------------------------------
|
| 39 |
+
def load_assets():
|
| 40 |
+
st.info("Downloading assets from Google Drive (only if missing)...")
|
| 41 |
+
for url, path in zip(assets_links, paths):
|
| 42 |
+
if not path.exists():
|
| 43 |
+
gdown.download(url, str(path), quiet=False)
|
| 44 |
+
st.success("Assets ready β
")
|
| 45 |
+
|
| 46 |
+
embeddings = np.load(embeddings_path)
|
| 47 |
+
umap_2d = np.load(umap_embeddings_path)
|
| 48 |
+
docs = pd.read_csv(data_file_path)
|
| 49 |
+
with open(umap_model_path, "rb") as f:
|
| 50 |
+
umap_model = pickle.load(f)
|
| 51 |
+
with open(pca_model_path, "rb") as f:
|
| 52 |
+
pca_model = pickle.load(f)
|
| 53 |
+
return embeddings, umap_2d, docs, umap_model, pca_model
|
| 54 |
+
|
| 55 |
+
embeddings, umap_2d, docs, umap_model, pca_model = load_assets()
|
| 56 |
+
|
| 57 |
+
# -------------------------------
|
| 58 |
+
# Load SentenceTransformer (cached)
|
| 59 |
+
# -------------------------------
|
| 60 |
+
@st.cache_resource
|
| 61 |
+
def load_text_encoder():
|
| 62 |
+
return SentenceTransformer('Alibaba-NLP/gte-multilingual-base', trust_remote_code=True)
|
| 63 |
+
|
| 64 |
+
model = load_text_encoder()
|
| 65 |
+
|
| 66 |
+
# -------------------------------
|
| 67 |
+
# UI
|
| 68 |
+
# -------------------------------
|
| 69 |
+
st.title("π Semantic Search β Alibaba Embeddings")
|
| 70 |
+
st.markdown("Enter a query to highlight semantically similar documents on the 2D UMAP plot.")
|
| 71 |
+
|
| 72 |
+
query = st.text_input("Enter search query:")
|
| 73 |
+
top_k = st.slider("Number of matches to highlight", min_value=10, max_value=2500, value=100)
|
| 74 |
+
|
| 75 |
+
similarity_measure = st.radio(
|
| 76 |
+
"Similarity measure",
|
| 77 |
+
["Cosine", "Euclidean", "Manhattan (L1)"],
|
| 78 |
+
horizontal=True
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# -------------------------------
|
| 82 |
+
# Search logic
|
| 83 |
+
# -------------------------------
|
| 84 |
+
if query:
|
| 85 |
+
with st.spinner("Encoding and searching..."):
|
| 86 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 87 |
+
query_numpy = query_embedding.cpu().numpy().reshape(1, -1)
|
| 88 |
+
query_pca = pca_model.transform(query_numpy)
|
| 89 |
+
query_umap = umap_model.transform(query_pca)
|
| 90 |
+
|
| 91 |
+
if similarity_measure == "Cosine":
|
| 92 |
+
scores = util.cos_sim(query_embedding, embeddings)[0]
|
| 93 |
+
elif similarity_measure == "Euclidean":
|
| 94 |
+
scores = -torch.cdist(query_embedding, embeddings, p=2)[0]
|
| 95 |
+
elif similarity_measure == "Manhattan (L1)":
|
| 96 |
+
scores = -torch.cdist(query_embedding, embeddings, p=1)[0]
|
| 97 |
+
|
| 98 |
+
top_results = scores.argsort(descending=True)
|
| 99 |
+
highlight_indices = top_results[:top_k].cpu().numpy()
|
| 100 |
+
|
| 101 |
+
documents = docs.title_narrative
|
| 102 |
+
reporting_org = docs.reporting_org_name
|
| 103 |
+
funding = docs.Funding
|
| 104 |
+
|
| 105 |
+
labels = ["Match" if i in highlight_indices else "Other" for i in range(len(documents))]
|
| 106 |
+
|
| 107 |
+
df = pd.DataFrame({
|
| 108 |
+
"UMAP_1": umap_2d[:, 0],
|
| 109 |
+
"UMAP_2": umap_2d[:, 1],
|
| 110 |
+
"Label": labels,
|
| 111 |
+
"Text": documents,
|
| 112 |
+
"Reporting Org": reporting_org,
|
| 113 |
+
"Funding": funding,
|
| 114 |
+
})
|
| 115 |
+
|
| 116 |
+
df["Title"] = df["Text"].str.slice(0, 100) + "..."
|
| 117 |
+
df["Index"] = df.index
|
| 118 |
+
|
| 119 |
+
color_discrete_map = {"Match": "red", "Other": "lightgray"}
|
| 120 |
+
|
| 121 |
+
fig = px.scatter(
|
| 122 |
+
df,
|
| 123 |
+
x="UMAP_1",
|
| 124 |
+
y="UMAP_2",
|
| 125 |
+
color="Label",
|
| 126 |
+
color_discrete_map=color_discrete_map,
|
| 127 |
+
hover_data={"Text": False, "Title": True, "Index": True, "Reporting Org": True, "Funding":True, "UMAP_1": False, "UMAP_2": False},
|
| 128 |
+
opacity=0.7,
|
| 129 |
+
title=f"Top {top_k} semantic matches for: '{query}' ({similarity_measure})",
|
| 130 |
+
width=900,
|
| 131 |
+
height=700
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
fig.add_trace(go.Scatter(
|
| 135 |
+
x=[query_umap[0][0]], y=[query_umap[0][1]],
|
| 136 |
+
mode='markers+text',
|
| 137 |
+
marker=dict(size=10, color='blue', symbol='x'),
|
| 138 |
+
name='Query',
|
| 139 |
+
text=['Query'], textposition='top center'
|
| 140 |
+
))
|
| 141 |
+
|
| 142 |
+
fig.update_traces(marker=dict(size=4))
|
| 143 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 144 |
+
|
| 145 |
+
st.subheader("Top 10 matched documents")
|
| 146 |
+
for rank, idx in enumerate(highlight_indices[:10], start=1):
|
| 147 |
+
st.markdown(f"{rank}. {documents.iloc[idx]}")
|
| 148 |
+
else:
|
| 149 |
+
st.info("Enter a search query to begin.")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,15 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core app
|
| 2 |
+
streamlit==1.39.0
|
| 3 |
+
gdown==5.2.0
|
| 4 |
+
pandas==2.2.3
|
| 5 |
+
numpy==2.1.2
|
| 6 |
+
numba==0.61.2
|
| 7 |
+
joblib==1.4.2
|
| 8 |
+
plotly==5.24.1
|
| 9 |
+
torch==2.6.0
|
| 10 |
+
sentence-transformers==3.2.1
|
| 11 |
+
umap-learn==0.5.6
|
| 12 |
+
scikit-learn==1.5.2
|
| 13 |
+
|
| 14 |
+
# Optional (used internally by SentenceTransformer models)
|
| 15 |
+
transformers==4.45.2
|